版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Statisticsfor
BusinessandEconomics(14e)
MetricVersionAnderson,Sweeney,Williams,Camm,Cochran,Fry,Ohlmann?2020CengageLearning?2020Cengage.Maynotbescanned,copiedorduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart,exceptforuseaspermittedinalicensedistributedwithacertainproductorserviceorotherwiseonapassword-protectedwebsiteorschool-approvedlearningmanagementsystemforclassroomuse.1Chapter17-TimeSeriesAnalysisandForecasting17.1–TimeSeriesPatterns17.2–ForecastAccuracy17.3–MovingAveragesandExponentialSmoothing17.4–TrendProjection17.5–SeasonalityandTrend17.6–TimeSeriesDecomposition2ForecastingMethods:QualitativeForecastingmethodscanbeclassifiedasqualitativeorquantitative.Qualitativemethodsgenerallyinvolvetheuseofexpertjudgmenttodevelopforecasts.Suchmethodsareappropriatewhenhistoricaldataonthevariablebeingforecastareeithernotapplicableorunavailable.Wewillfocusexclusivelyonquantitativeforecastingmethodsinthischapter.3ForecastingMethods:Quantitative(1of5)Quantitativeforecastingmethodscanbeusedwhen:Pastinformationaboutthevariablebeingforecastisavailable,Theinformationcanbequantified,andItisreasonabletoassumethepatternofthepastwillcontinueInsuchcases,aforecastcanbedevelopedusingatimeseriesmethodoracausalmethod.4ForecastingMethods:Quantitative(2of5)Quantitativemethodsarebasedonananalysisofhistoricaldataconcerningoneormoretimeseries.Atimeseriesisasetofobservationsmeasuredatsuccessivepointsintimeoroversuccessiveperiodsoftime.Ifthehistoricaldatausedarerestrictedtopastvaluesoftheseriesthatwearetryingtoforecast,theprocedureiscalledatimeseriesmethod.Ifthehistoricaldatausedinvolveothertimeseriesthatarebelievedtoberelatedtothetimeseriesthatwearetryingtoforecast,theprocedureiscalledacausalmethod.5ForecastingMethods:Quantitative(3of5)TimeSeriesAnalysisTheobjectiveoftimeseriesanalysisistodiscoverapatterninthehistoricaldataortimeseriesandthenextrapolatethepatternintothefuture.Theforecastisbasedsolelyonpastvaluesofthevariableand/orpastforecasterrors.6ForecastingMethods:Quantitative(4of5)CausalMethodsCausalforecastingmethodsarebasedontheassumptionthatthevariableweareforecastinghasacause-effectrelationshipwithoneormoreothervariables.Lookingatregressionanalysisasaforecastingtool,wecanviewthetimeseriesvaluethatwewanttoforecastasthedependentvariable.Ifwecanidentifyagoodsetofrelatedindependentorexplanatoryvariables,wemaybeabletodevelopanestimatedregressionequationforforecastingthetimeseries.7ForecastingMethods:Quantitative(5of5)RegressionAnalysisBytreatingtimeastheindependentvariableandthetimeseriesasadependentvariable,regressionanalysiscanalsobeusedasatimeseriesmethod.Time-seriesregressionreferstotheuseofregressionanalysiswhenthesoleindependentvariableistime.Cross-sectionalregressionreferstotheuseofregressionanalysiswhentheindependentvariable(s)is(are)somethingotherthantime.8ForecastingMethods9TimeSeriesPatternsAtimeseriesisasequenceofobservationsonavariablemeasuredatsuccessivepointsintimeoroversuccessiveperiodsoftime.Thepatternofthedataisanimportantfactorinunderstandinghowthetimeserieshasbehavedinthepast.Ifsuchbehaviorcanbeexpectedtocontinueinthefuture,wecanuseittoguideusinselectinganappropriateforecastingmethod.10TimeSeriesPlot
(1of2)Ausefulfirststepinselectinganappropriateforecastingmethodistoconstructatimeseriesplot.Atimeseriesplotisagraphicalpresentationoftherelationshipbetweentimeandthetimeseriesvariable.Timeisonthehorizontalaxis,andthetimeseriesvaluesareshownontheverticalaxis.11TimeSeriesPlot
(2of2)Example:RoscoDrugsSalesofComfortbrandheadachetonic(inbottles)forthepast10weeksatRoscoDrugsareshownbelow.RoscoDrugswouldliketoidentifytheunderlyingpatterninthedatatoguideitinselectinganappropriateforecastingmethod.WeekSales1110211531254120512561207130811591101013012TimeSeriesPatterns
(1of6)Thecommontypesofdatapatternsthatcanbeidentifiedwhenexaminingatimeseriesplotinclude:HorizontalTrendSeasonalTrendandSeasonalCyclical13TimeSeriesPatterns(2of6)HorizontalPatternAhorizontalpatternexistswhenthedatafluctuatearoundaconstantmean.Changesinbusinessconditionscanoftenresultinatimeseriesthathasahorizontalpatternshiftingtoanewlevel.Achangeinthelevelofthetimeseriesmakesitmoredifficulttochooseanappropriateforecastingmethod.14TimeSeriesPatterns(3of6)TrendPatternAtimeseriesmayshowgradualshiftsormovementstorelativelyhigherorlowervaluesoveralongerperiodoftime.Trendisusuallytheresultoflong-termfactorssuchaschangesinthepopulation,demographics,technology,orconsumerpreferences.Asystematicincreaseordecreasemightbelinearornonlinear.Atrendpatterncanbeidentifiedbyanalyzingmultiyearmovementsinhistoricaldata.15TimeSeriesPatterns(4of6)SeasonalPatternSeasonalpatternsarerecognizedbyseeingthesamerepeatingpatternofhighsandlowsoversuccessiveperiodsoftimewithinayear.Aseasonalpatternmightoccurwithinaday,week,month,quarter,year,orsomeotherintervalnogreaterthanayear.Aseasonalpatterndoesnotnecessarilyrefertothefourseasonsoftheyear(spring,summer,fall,andwinter).16TimeSeriesPatterns(5of6)TrendandSeasonalPatternSometimeseriesincludeacombinationofatrendandseasonalpattern.Insuchcasesweneedtouseaforecastingmethodthathasthecapabilitytodealwithbothtrendandseasonality.Timeseriesdecompositioncanbeusedtoseparateordecomposeatimeseriesintotrendandseasonalcomponents.17TimeSeriesPatterns(6of6)CyclicalPatternAcyclicalpatternexistsifthetimeseriesplotshowsanalternatingsequenceofpointsbelowandabovethetrendlinelastingmorethanoneyear.Often,thecyclicalcomponentofatimeseriesisduetomultiyearbusinesscycles.Businesscyclesareextremelydifficult,ifnotimpossible,toforecast.Inthischapterwedonotdealwithcyclicaleffectsthatmaybepresentinthetimeseries.18SelectingaForecastingMethodTheunderlyingpatterninthetimeseriesisanimportantfactorinselectingaforecastingmethod.Thus,atimeseriesplotshouldbeoneofthefirstthingsdevelopedwhentryingtodeterminewhatforecastingmethodtouse.Ifweseeahorizontalpattern,thenweneedtoselectamethodappropriateforthistypeofpattern.Ifweobserveatrendinthedata,thenweneedtouseamethodthathasthecapabilitytohandletrendeffectively.19ForecastAccuracy(1of8)Measuresofforecastaccuracyareusedtodeterminehowwellaparticularforecastingmethodisabletoreproducethetimeseriesdatathatarealreadyavailable.Measuresofforecastaccuracyareimportantfactorsincomparingdifferentforecastingmethods.Byselectingthemethodthathasthebestaccuracyforthedataalreadyknown,wehopetoincreasethelikelihoodthatwewillobtainbetterforecastsforfuturetimeperiods.20ForecastAccuracy(2of8)Thekeyconceptassociatedwithmeasuringforecastaccuracyisforecasterror.ForecastError=ActualValue–ForecastApositiveforecasterrorindicatestheforecastingmethodunderestimatedtheactualvalue.Anegativeforecasterrorindicatestheforecastingmethodoverestimatedtheactualvalue.21ForecastAccuracy(3of8)MeanError(ME)Asimplemeasureofforecastaccuracyisthemeanoraverageoftheforecasterrors.Becausepositiveandnegativeforecasterrorstendtooffsetoneanother,themeanerrorislikelytobesmall.Thus,themeanerrorisnotaveryusefulmeasure.MeanAbsoluteError(MAE)Thismeasureavoidstheproblemofpositiveandnegativeerrorsoffsettingoneanother.Itisthemeanoftheabsolutevaluesoftheforecasterrors.22ForecastAccuracy(4of8)MeanSquaredError(MSE)Thisisanothermeasurethatavoidstheproblemofpositiveandnegativeerrorsoffsettingoneanother.Itistheaverageofthesquaredforecasterrors.MeanAbsolutePercentageError(MAPE)ThesizeofMAEandMSEdependuponthescaleofthedata,soitisdifficulttomakecomparisonsfordifferenttimeintervals.Tomakesuchcomparisonsweneedtoworkwithrelativeorpercentageerrormeasures.TheMAPEistheaverageoftheabsolutepercentageerrorsoftheforecasts.23ForecastAccuracy(5of8)Todemonstratethecomputationofthesemeasuresofforecastaccuracy,wewillintroducethesimplestofforecastingmethods.Thenaiveforecastingmethodusesthemostrecentobservationinthetimeseriesastheforecastforthenexttimeperiod.24ForecastAccuracy(6of8)Example:RoscoDrugsSalesofComfortbrandheadachetonic(inbottles)forthepast10weeksatRoscoDrugsareshown.IfRoscousesthena?veforecastmethodtoforecastsalesforweeks2–10,whataretheresultingMAE,MSE,andMAPEvalues?WeekSales1110211531254120512561207130811591101013025ForecastAccuracy(7of8)WeekSalesNa?veforecastForecastErrorAbsoluteErrorSquaredErrorAbsolutePercentError1110EmptyCellEmptyCellEmptyCellEmptyCellEmptyCell211511055254.35312511510101008.004120125Negative
55254.17512512055254.006120125Negative
55254.17713012010101007.698115130Negative
151512513.049110115Negative55254.5510130110202040015.38TotalEmptyCellEmptyCellEmptyCell8085065.3626ForecastAccuracy(8of8)NaiveForecastAccuracy27MovingAveragesandExponentialSmoothingNowwediscussthreeforecastingmethodsthatareappropriateforatimeserieswithahorizontalpattern:MovingAveragesWeightedMovingAveragesExponentialSmoothingTheyarecalledsmoothingmethodsbecausetheirobjectiveistosmoothouttherandomfluctuationsinthetimeseries.Theyaremostappropriateforshort-rangeforecasts.28MovingAverages(1of7)Themovingaveragesmethodusestheaverageofthemostrecentkdatavaluesinthetimeseriesastheforecastforthenextperiod.Eachobservationinthemovingaveragecalculationreceivesthesameweight.29MovingAverages(2of7)Thetermmovingisusedbecauseeverytimeanewobservationbecomesavailableforthetimeseries,itreplacestheoldestobservationintheequation.Asaresult,theaveragewillchange,ormove,asnewobservationsbecomeavailable.30MovingAverages(3of7)
31MovingAverages(4of7)Example:RoscoDrugsIfRoscoDrugsusesa3-periodmovingaveragetoforecastsales,whataretheforecastsforweeks4-11?WeekSales1110211531254120512561207130811591101013032WeekSales3MAForecast1110EmptyCell2115EmptyCell3125EmptyCell4120116.75125120.06120123.37130121.78115125.09110121.710130118.311EmptyCell118.333MovingAverages(5of7)MovingAverages(6of7)WeekSales3MAForecastForecastErrorAbsoluteErrorSquaredErrorAbsolutePercentError1110EmptyCellEmptyCellEmptyCellEmptyCellEmptyCell2115EmptyCellEmptyCellEmptyCellEmptyCellEmptyCell3125EmptyCellEmptyCellEmptyCellEmptyCellEmptyCell4120116.73.33.310.892.755125120.05.05.025.004.006120123.3Negative3.33.310.892.757130121.78.38.368.896.388115125.0Negative10.010.010.008.709110121.7Negative11.711.7136.8910.6410130118.311.711.7136.899.00TotalEmptyCellEmptyCell3.335.33489.4544.2234MovingAverages(7of7)3-MAForecastAccuracyThe3-weekmovingaverageapproachprovidedmoreaccurateforecaststhanthenaiveapproach.35WeightedMovingAverages(1of2)Tousethismethodwemustfirstselectthenumberofdatavaluestobeincludedintheaverage.Next,wemustchoosetheweightforeachofthedatavalues.Themorerecentobservationsaretypicallygivenmoreweightthanolderobservations.Forconvenience,theweightsshouldsumto1.36WeightedMovingAverages(2of2)Anexampleofa3-periodweightedmovingaverage(3WMA)is:3WMA=0.2(110)+0.3(115)=119Inthisexampletheweightsare0.2,0.3,and0.5(whichsumto1).125isthemostrecentofthethreeobservations.37ExponentialSmoothing
(1of6)Thismethodisaspecialcaseofaweightedmovingaveragesmethod;weselectonlytheweightforthemostrecentobservation.Theweightsfortheotherdatavaluesarecomputedautomaticallyandbecomesmallerastheobservationsgrowolder.Theexponentialsmoothingforecastisaweightedaverageofalltheobservationsinthetimeseries.Thetermexponentialsmoothingcomesfromtheexponentialnatureoftheweightingschemeforthehistoricalvalues.38ExponentialSmoothing(2of6)ExponentialSmoothingForecast39ExponentialSmoothing(3of6)ExponentialSmoothingForecastWithalgebraicmanipulation,wecanrewrite
40ExponentialSmoothing(4of6)
WeekSales1110211531254120512561207130811591101013041ExponentialSmoothing(5of6)
42ExponentialSmoothing(6of6)
43
WeekSalesalphaequals.1ForecastForecastErrorAbsoluteErrorSquaredErrorAbsolutePercentError1110EmptyCellEmptyCellEmptyCellEmptyCellEmptyCell2115110.005.005.0025.004.353125110.5014.5014.50210.2511.604120111.958.058.0564.806.715125112.7612.2412.24149.949.796120113.986.026.0236.255.027130114.5815.4215.42237.7311.868115116.12Negative1.121.121.260.979110116.01Negative6.016.0136.125.4610130115.4114.5914.59212.8711.22TotalEmptyCellEmptyCellEmptyCell82.95974.2266.9844
ForecastAccuracy
45ExponentialSmoothing(α=0.8)
(1of2)WeekSalesalphaequals.8ForecastForecastErrorAbsoluteErrorSquaredErrorAbsolutePercentError1110EmptyCellEmptyCellEmptyCellEmptyCellEmptyCell2115110.005.005.0025.004.353125114.0011.0011.00121.008.804120122.80Negative2.202.207.841.835125120.564.444.4419.713.556120124.11Negative4.114.1116.913.437130120.829.189.1884.237.068115128.16Negative13.1613.16173.3011.449110117.63Negative7.637.6358.266.9410130111.5318.4718.47341.2714.21TotalEmptyCellEmptyCellEmptyCell75.19847.5261.6146ExponentialSmoothing(α=0.8)(2of2)ForecastAccuracy
47TrendProjectionIfatimeseriesexhibitsalineartrend,themethodofleastsquaresmaybeusedtodetermineatrendline(projection)forfutureforecasts.Leastsquares,alsousedinregressionanalysis,determinestheuniquetrendlineforecastwhichminimizesthemeansquareerrorbetweenthetrendlineforecastsandtheactualobservedvaluesforthetimeseries.Theindependentvariableisthetimeperiodandthedependentvariableistheactualobservedvalueinthetimeseries.48LinearTrendRegression
(1of5)Usingthemethodofleastsquares,theformulaforthetrendprojectionis:
49LinearTrendRegression
(2of5)ForthetrendprojectionequationTt
=b0+b1t
50LinearTrendRegression(3of5)ThenumberofplumbingrepairjobsperformedbyAuger'sPlumbingServiceinthelastninemonthsislistedontheright.ForecastthenumberofrepairjobsAuger'swillperforminDecemberusingtheleastsquaresmethod.MonthJobsMarch353April387May342June374July396August409September399October412November40851LinearTrendRegression(4of5)(month)ttminustoverbarleftparenthesistminustoverbarrightparenthesissquaredysubscripttbaselineleftparenthesisYsubscripttbaselineminusYoverbar)leftparenthesistminustoverbarrightparenthesisleftparenthesisYsubscripttbaselineminusYoverbarrightparenthesis(Mar.)1-416353-33.67134.68(Apr.)2-393870.33-0.99(May)3-24342-44.6789.34(June)4-11374-12.6712.67(July)5003969.330(Aug.)61140922.3322.33(Sep.)72439912.3324.66(Oct.)83941225.3375.99(Nov.)941640821.3385.32Sum45EMPTYCELLEMPTYCELL3480EMPTYCELL444.0052LinearTrendRegression(5of5)53TrendProjection
(1of3)
MonthJobsMarch353April387May342June374July396August409September399October412November40854TrendProjection
(2of3)Three-MonthWeightedMovingAverageTheforecastforDecemberwillbetheweightedaverageoftheprecedingthreemonths:September,October,andNovember.TrendProjection:F10=422.27(fromearlierslide)55TrendProjection
(3of3)Conclusion:Duetothepositivetrendcomponentinthetimeseries,thetrendprojectionproducedaforecastthatismoreinlinewiththetrendthatexists.Theweightedmovingaverage,evenwithheavy(0.6)weightplacedonthecurrentperiod,producedaforecastthatislaggingbehindthechangingdata.56NonlinearTrendRegression
(1of3)Sometimestimeserieshaveacurvilinearornonlineartrend.Avarietyofnonlinearfunctionscanbeusedtodevelopanestimateofthetrendinatimeseries.Oneexampleisthisquadratictrendequation:Anotherexampleisthisexponentialtrendequation:57NonlinearTrendRegression
(2of3)Example:CholesterolDrugRevenueTheannualrevenueinmillionsofdollarsforacholesteroldrugforthefirst10yearsofsalesisshown.Acurvilinearfunctionappearstobeneededtomodelthelong-termtrend.YearRevenue123.1221.3327.4434.6533.8643.2759.5864.4974.21099.358NonlinearTrendRegression
(3of3)Example:CholesterolDrugRevenue59SeasonalitywithoutTrend(1of6)Totheextentthatseasonalityexists,weneedtoincorporateitintoourforecastingmodelstoensureaccurateforecasts.Wewillfirstlookatthecaseofaseasonaltimeserieswithnotrendandthendiscusshowtomodelseasonalitywithtrend.60SeasonalitywithoutTrend(2of6)Example:UmbrellaSalesSometimesitisdifficulttoidentifypatternsinatimeseriespresentedinatable.Plottingthetimeseriescanbeveryinformative.YearQuarter1Quarter2Quarter3Quarter41125153106882118161133102313814411380410913712510951301651289661SeasonalitywithoutTrend(3of6)UmbrellaSalesTimeSeriesPlot62SeasonalitywithoutTrend(4of6)Thetimeseriesplotdoesnotindicateanylong-termtrendinsales.However,closeinspectionoftheplotdoesrevealaseasonalpattern.Thefirstandthirdquartershavemoderatesales,thesecondquarterthehighestsales,andthefourthquartertendstobethelowestquarterintermsofsales.63SeasonalitywithoutTrend(5of6)
64SeasonalitywithoutTrend(6of6)GeneralFormofEstimatedRegressionEquationis:
65SeasonalityandTrend(1of4)Wewillnowextendtheregressionapproachtoincludesituationswherethetimeseriescontainsbothaseasonaleffectandalineartrend.Wewillintroduceanadditionalindependentvariabletorepresenttime.Example:Terry’sTieShopBusinessatTerry'sTieShopcanbeviewedasfallingintothreedistinctseasons:(1)Christmas(NovemberandDecember);(2)Father'sDay(lateMaytomidJune);and(3)allothertimes.Averageweeklysales($)duringeachofthethreeseasonsduringthepastfouryearsareshownonthenextslide.66SeasonalityandTrend(2of4)Example:Terry’sTieShopDetermineaforecastfortheaverageweeklysalesinyear5foreachofthethreeseasons.YearSeason1Season2Season311856201298521995216810723224123061105422802408112067SeasonalityandTrend(3of4)Therearethreeseasons,sowewillneedtwodummyvariables.Seas1=1ifSeason1,0otherwiseSeas2=1ifSeason2,0otherwiseGeneralFormofEstimatedRegressionEquationis:EstimatedRegressionEquationis:Sales=797.0+1095.43(Seas1)+1189.47(Seas2)+36.47(t)68SeasonalityandTrend(4of4)Theforecastsofaverageweeklysalesinthethreeseasonsofyear5are:Seas.1:Sales=797+1095.43(1)+1189.47(0)+36.47(13)=2366.5Seas.2:Sales=797+1095.43(0)+1189.47(1)+36.47(14)=2497.0Seas.3:Sales=797+1095.43(0)+1189.47(0)+36.47(15)=1344.069TimeSeriesDecomposition
(1of5)Timeseriesdecompositioncanbeusedtoseparateordecomposeatimeseriesintoseasonal,trend,andirregular(error)components.Whilethismethodcanbeusedforforecasting,itsprimaryapplicabilityistogetabetterunderstandingofthetimeseries.Understandingwhatisreallygoingonwithatimeseriesoftendependsupontheuseofdeseasonalizeddata.70TimeSeriesDecomposition(2of5)Decompositionmethodsassumethattheactualtimeseriesvalueatperiodtisafunctionofthreecomponents:trend,seasonal,andirregular.Howthesethreecomponentsarecombinedtogivetheobservedvaluesofthetimeseriesdependsuponwhetherweassumetherelationshipisbestdescribedbyanadditiveoramultiplicativemodel.71TimeSeriesDecomposition(3of5)Anadditivemodelfollowstheform:Anadditivemodelisappropriateinsituationswheretheseasonalfluctuationsdonotdependuponthelevelofthetimeseries.72TimeSeriesDecomposition(4of5)Amultiplicativemodelfollowstheform:Amultiplicativemodelisappropriate,forexample,iftheseasonalfluctuationsgrowlargerasthesalesvolumeincreasesbecauseofalong-termlineartrend.73TimeSeriesDecomposition(5of5)Example:Terry’sTieShopDetermineaforecastfortheaverageweeklysalesinyear5foreachofthethreeseasons.YearSeason1Season2Season311856201298521995216810723224123061105422802408112074CalculatingtheSeasonalIndexes
(1of9)Step1.Calculatethecenteredmovingaverages.Therearethreedistinctseasonsineachyear.Hence,takeathree-seasonmovingaveragetoeliminateseasonalandirregularfactors.Forexample:1stCMA=(1856+2012+985)/3=1617.672ndCMA=(2012+985+1995)/3=1664.00Etc.75CalculatingtheSeasonalIndexes
(2of9)Step2.CentertheCMAsoninteger-valuedperiods.Thefirstcenteredmovingaveragecomputedinstep1(1617.67)willbecenteredonseason2ofyear1.Notethatthemovingaveragesfromstep1centerthemselvesoninteger-valuedperiodsbecausenisanoddnumber.76CalculatingtheSeasonalIndexes(3of9)YearSeasonDollarSalesleftparenthesisYsubscripttbaselinerightparenthesisMovingAverage111856EMPTYCELL1220121617.67139851664.002119951716.002221681745.002310721827.003122411873.003223061884.003311051897.004122801931.004224081936.00431120EMPTYCELL77CalculatingtheSeasonalIndexes
(4of9)Thecenteredmovingaveragevaluestendto“smoothout”boththeseasonalandirregularfluctuationsinthetime
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 某著名企業(yè)石河子經(jīng)濟(jì)開發(fā)區(qū)招商引資及管理體系咨詢項目建議書11
- 某著名企業(yè)品牌翻新策略提報
- 《GBT 22237-2008表面活性劑 表面張力的測定》專題研究報告
- 道路安全培訓(xùn)活動記錄課件
- 2026年甘肅省平?jīng)鍪懈呗殕握姓Z文試題題庫(答案+解析)
- 2026年冀教版九年級英語上冊月考試題(附答案)
- 道教安全生產(chǎn)培訓(xùn)班課件
- 2026年度零售定點藥店醫(yī)保培訓(xùn)考試題庫含答案
- 道客企業(yè)安全培訓(xùn)
- 2025帕博利珠單抗輔助治療非小細(xì)胞肺癌指南解讀課件
- (2025年)四川省自貢市紀(jì)委監(jiān)委公開遴選公務(wù)員筆試試題及答案解析
- 2026屆江蘇省常州市高一上數(shù)學(xué)期末聯(lián)考模擬試題含解析
- 2026年及未來5年市場數(shù)據(jù)中國水質(zhì)監(jiān)測系統(tǒng)市場全面調(diào)研及行業(yè)投資潛力預(yù)測報告
- 2026安徽省農(nóng)村信用社聯(lián)合社面向社會招聘農(nóng)商銀行高級管理人員參考考試試題及答案解析
- 強(qiáng)夯地基施工質(zhì)量控制方案
- 藝考機(jī)構(gòu)協(xié)議書
- 2025年12月27日四川省公安廳遴選面試真題及解析
- 《生態(tài)環(huán)境重大事故隱患判定標(biāo)準(zhǔn)》解析
- GB/T 16927.1-2011高電壓試驗技術(shù)第1部分:一般定義及試驗要求
- DB32∕T 4107-2021 民用建筑節(jié)能工程熱工性能現(xiàn)場檢測標(biāo)準(zhǔn)
- OECD稅收協(xié)定范本中英對照文本
評論
0/150
提交評論