浙江省寧波市海曙區(qū)效實中學(xué)2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第1頁
浙江省寧波市海曙區(qū)效實中學(xué)2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第2頁
浙江省寧波市海曙區(qū)效實中學(xué)2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第3頁
浙江省寧波市海曙區(qū)效實中學(xué)2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第4頁
浙江省寧波市海曙區(qū)效實中學(xué)2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省寧波市海曙區(qū)效實中學(xué)2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.2.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.3.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.4.已知、為非零實數(shù),若且,則下列不等式成立的是()A. B.C. D.5.已知,則的大小關(guān)系為()A. B.C. D.6.圓錐曲線具有豐富的光學(xué)性質(zhì),從橢圓的一個焦點發(fā)出的光線,經(jīng)過橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學(xué)性質(zhì)知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.7.命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤58.在中,已知,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形9.在等差數(shù)列中,若的值是A.15 B.16C.17 D.1810.若向量則()A. B.3C. D.11.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.1612.若不等式在上有解,則的最小值是()A.0 B.-2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點為A,上頂點為B,且直線l與橢圓交于C,D兩點,若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為___________.14.已知函數(shù),則______15.記為等比數(shù)列的前n項和,若,公比,則______16.以拋物線C的頂點為圓心的圓交C于、兩點,交C的準線于、兩點.,,則C的焦點到準線的距離為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求下列函數(shù)的導(dǎo)數(shù)(1);(2)18.(12分)已知是等差數(shù)列,是等比數(shù)列,且(1)求,的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)在等差數(shù)列中,,前10項和(1)求列通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和20.(12分)某企業(yè)搜集了某產(chǎn)品的投人成本x(單位:萬元)與銷售收入y(單位:萬元)的六組數(shù)據(jù),并將其繪制成如圖所示的散點圖.根據(jù)散點圖可以看出,y與x之間是線性相關(guān)的.(1)試用最小二乘法求出y關(guān)于x的線性回歸方程;(2)若投入成本不高于10萬元,則可以根據(jù)(1)中的回歸方程估計產(chǎn)品銷售收入;若投入成本高于10萬元,投入成本x(單位:萬元)與銷售收入y(單位:萬元)之間的關(guān)系式為.若該企業(yè)要追求更高的毛利率(毛利率),試問該企業(yè)對該產(chǎn)品的投入成本選擇收人7萬元更好,還是選擇12萬元更好?說明你的理由.參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為.參考數(shù)據(jù):.21.(12分)圓與軸的交點分別為,且與直線,都相切(1)求圓的方程;(2)圓上是否存在點滿足?若存在,求出滿足條件的所有點的坐標;若不存在,請說明理由.22.(10分)已知O為坐標原點,點P在拋物線C:上,點F為拋物線C的焦點,記P到直線的距離為d,且.(1)求拋物線C的標準方程;(2)若過點的直線l與拋物線C相切,求直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導(dǎo)函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點,從而求出函數(shù)的極大值;【詳解】解:因為,所以,依題意可得,即,解得,所以定義域為,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B2、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關(guān)系即可得到答案.【詳解】因為直線與垂直,且,所以,解得,設(shè)的傾斜角為,,所以.故選:D3、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.4、D【解析】作差法即可逐項判斷.【詳解】或,對于A:,∵,無法判斷正負,故A錯誤;對于B:,∵無法判斷正負,故B錯誤;對于C:,∵,,∴,,故C錯誤;對于D:,∴,故D正確.故選:D.5、B【解析】構(gòu)造利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設(shè)恒成立,函數(shù)在上單調(diào)遞減,.故選:B6、A【解析】先求得點坐標,然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A7、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個充分不必要條件即為集合的真子集,由選擇項可知C符合題意.故選:C8、B【解析】利用誘導(dǎo)公式、兩角和的正弦公式化簡已知條件,由此判斷出三角形的形狀.【詳解】由,得,得,由于,所以,所以.故選:B9、C【解析】由已知直接利用等差數(shù)列的性質(zhì)求解【詳解】在等差數(shù)列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故選C【點睛】本題考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),是基礎(chǔ)題10、D【解析】先求得,然后根據(jù)空間向量模的坐標運算求得【詳解】由于向量,,所以.故故選:D11、C【解析】根據(jù)“中國剩余定理”,進而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個判斷框,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)為2.輸出的i值為13.故選:C.12、D【解析】將題設(shè)條件轉(zhuǎn)化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設(shè),則在上單調(diào)遞減,所以,所以,即,故選:D.【點睛】本題主要考查二次不等式能成立問題,可以選擇分離參數(shù)轉(zhuǎn)化為最值問題,也可以進行分情況討論.二、填空題:本題共4小題,每小題5分,共20分。13、##0.25【解析】求出點A,B坐標,設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達定理即可計算作答.【詳解】依題意,點,直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:14、【解析】根據(jù)導(dǎo)數(shù)的定義求解即可【詳解】由,得,所以,故答案為:15、4【解析】根據(jù)給定條件列式求出數(shù)列的首項即可計算作答.【詳解】依題意,,解得,所以.故答案為:416、2【解析】畫出圖形,設(shè)出拋物線方程,利用勾股定理以及圓的半徑列出方程求解即可.【詳解】解:設(shè)拋物線為y2=2px,如圖:,又,解得,設(shè)圓的半徑為,,解得:p=2,即C的焦點到準線的距離為:2.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】(1)導(dǎo)數(shù)四則運算中的乘除法則.(2)求導(dǎo)數(shù),主要考查復(fù)合函數(shù),外導(dǎo)乘內(nèi)導(dǎo).【小問1詳解】【小問2詳解】.18、(1),;(2).【解析】(1)由,根據(jù)等比數(shù)列的性質(zhì)求得、的值,即可得的通項公式,再根據(jù)列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)結(jié)合(1)可得,根據(jù)錯位相減法,利用等比數(shù)列求和公式可得結(jié)果.【詳解】(1)等比數(shù)列的公比,所以,設(shè)等差數(shù)列公差為因為,,所以,即所以(2)由(1)知,,因此從而數(shù)列的前項和,,,兩式作差可得,,解得.【點睛】本題主要考查等比數(shù)列和等差數(shù)列的通項、等比數(shù)列的求和公式以及錯位相減法求數(shù)列的前項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫出“”與“”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式.19、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為20、(1)(2)該企業(yè)對該產(chǎn)品的投入成本選擇收人12萬元更好,理由見解析.【解析】(1)根據(jù)公式計算出和,求出線性回歸方程;(2)分別求出投入成本7萬和12萬時的毛利率,比較出大小即可得到答案.【小問1詳解】,,,所以y關(guān)于x的線性回歸方程為;【小問2詳解】該企業(yè)對該產(chǎn)品的投入成本選擇收人12萬元更好,理由如下:當(dāng)時,,此時毛利率為×100%≈34%;當(dāng)時,,此時毛利率為=40%,因為40%>34%,所以該企業(yè)對該產(chǎn)品的投入成本選擇收人12萬元更好.21、(1)(2)存在,或【解析】(1)由題意,設(shè)圓心,由圓與兩直線相切,可得圓心到兩直線的距離都等于圓的半徑,進而可求,然后求出半徑即可得答案;(2)假設(shè)圓上存在點滿足,利用向量數(shù)量積的坐標運算化簡,再聯(lián)立圓的方程即可求解.【小問1詳解】解:因為圓與軸的交點分別為,,所以圓心在弦的垂直平分線上,設(shè)圓心,又圓與直線,都相切,所以,解得,所以圓心,半徑,所以圓的方程為;【小問2詳解】解:假設(shè)圓上存在點滿足,則,即①,又,即②,聯(lián)立①②可得或,所以存在點或滿足.22、(1);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論