湖北省天門、仙桃、潛江三市2025-2026學年數(shù)學高二上期末達標測試試題含解析_第1頁
湖北省天門、仙桃、潛江三市2025-2026學年數(shù)學高二上期末達標測試試題含解析_第2頁
湖北省天門、仙桃、潛江三市2025-2026學年數(shù)學高二上期末達標測試試題含解析_第3頁
湖北省天門、仙桃、潛江三市2025-2026學年數(shù)學高二上期末達標測試試題含解析_第4頁
湖北省天門、仙桃、潛江三市2025-2026學年數(shù)學高二上期末達標測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省天門、仙桃、潛江三市2025-2026學年數(shù)學高二上期末達標測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直四棱柱的棱長均為,則直線與側(cè)面所成角的正切值為()A. B.C. D.2.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.3.以下說法:①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②設有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設具有相關(guān)關(guān)系的兩個變量的相關(guān)系數(shù)為,那么越接近于0,之間的線性相關(guān)程度越高;⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大。其中錯誤的個數(shù)是()A.0 B.1C.2 D.34.【2018江西撫州市高三八校聯(lián)考】已知雙曲線(,)與拋物線有相同的焦點,且雙曲線的一條漸近線與拋物線的準線交于點,則雙曲線的離心率為()A. B.C. D.5.設雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大6.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.47.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.8.已知變量x,y具有線性相關(guān)關(guān)系,它們之間的一組數(shù)據(jù)如下表所示,若y關(guān)于x的線性回歸方程為,則m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.39.已知函數(shù)f(x)的圖象如圖所示,則導函數(shù)f(x)的圖象可能是()A. B.C. D.10.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標為,且為直角三角形,則以直線為準線的拋物線的標準方程為()A. B.C. D.11.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.412.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0公共弦所在直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,橢圓的左右焦點為,,以為圓心的圓過原點,且與橢圓在第一象限交于點,若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.14.設函數(shù),.若對任何,,恒成立,求的取值范圍______.15.某古典概型的樣本空間,事件,則___________.16.已知不等式有且只有兩個整數(shù)解,則實數(shù)a的范圍為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍18.(12分)如圖,在四面體ABCD中,,平面ABC,點M為棱AB的中點,,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值19.(12分)點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標;(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.20.(12分)已知圓的圓心為,且經(jīng)過點.(1)求圓的標準方程;(2)已知直線與圓相交于、兩點,求.21.(12分)已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M(1)證明:直線OM的斜率與l的斜率的乘積為定值;(2)若l過點,延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率,若不能,說明理由22.(10分)在空間直角坐標系Oxyz中,O為原點,已知點,,,設向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實數(shù)k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意把直線與側(cè)面所成角的正切值轉(zhuǎn)化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側(cè)面所成角的正切值為.故選:D.2、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設點的坐標為,有,由圓的圓心坐標為,是拋物線的焦點坐標,有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.3、C【詳解】方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據(jù)線性回歸分析中相關(guān)系數(shù)的定義:在線性回歸分析中,相關(guān)系數(shù)為r,越接近于1,相關(guān)程度越大,故④不正確;對于觀察值來說,越大,“x與y有關(guān)系”的可信程度越大,故⑤正確.故選:C【點睛】本題主要考查用樣本估計總體、線性回歸方程、獨立性檢驗的基本思想.4、C【解析】由題意可知,拋物線的焦點坐標為,準線方程為,由在拋物線的準線上,則,則,則焦點坐標為,所以,則,解得,雙曲線的漸近線方程是,將代入漸近線的方程,即,則雙曲線的離心率為,故選C.5、C【解析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對雙曲線開口大小的影響即可得解.【詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.6、D【解析】利用等差數(shù)列下標和的性質(zhì)求值即可.【詳解】由等差數(shù)列下標和性質(zhì)知:.故選:D7、A【解析】根據(jù)平面,平面求解.【詳解】因為平面,平面,所以,又,,,所以,所以,故選:A8、A【解析】先求得樣本中心,代入回歸方程,即可得答案.【詳解】由題意得,又樣本中心在回歸方程上,所以,解得.故選:A9、D【解析】根據(jù)導函數(shù)正負與原函數(shù)單調(diào)性關(guān)系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應到導函數(shù)先負再正,再負再正,且原函數(shù)在處與軸相切,故可知,導函數(shù)圖象為D故選:D10、B【解析】設點位于第一象限,求得直線的方程,可得出點的坐標,由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準線的拋物線的標準方程.【詳解】設點位于第一象限,直線的方程為,聯(lián)立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準線的拋物線的標準方程為.故選:B.【點睛】本題考查拋物線標準方程的求解,考查計算能力,屬于中等題.11、B【解析】由題設知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B12、B【解析】兩圓的方程消掉二次項后的二元一次方程即為公共弦所在直線方程.【詳解】由x2+y2-4=0與x2+y2-4x+4y-12=0兩式相減得:,即.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.14、【解析】先把原不等式轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),利用恒成立,求出的取值范圍.【詳解】因為對任何,,所以對任何,,所以在上為減函數(shù).,,所以恒成立,即對恒成立,所以,所以.即的取值范圍是.故答案為:.【點睛】恒(能)成立問題求參數(shù)的取值范圍:①參變分離,轉(zhuǎn)化為不含參數(shù)的最值問題;②不能參變分離,直接對參數(shù)討論,研究的單調(diào)性及最值;③特別地,個別情況下恒成立,可轉(zhuǎn)換為(二者在同一處取得最值).15、##0.5【解析】根據(jù)定義直接計算得到答案.【詳解】.故答案為:.16、【解析】參變分離后研究函數(shù)單調(diào)性及極值,結(jié)合與相鄰的整數(shù)點的函數(shù)值大小關(guān)系求出實數(shù)a的范圍.【詳解】整理為:,即函數(shù)在上方及線上存在兩個整數(shù)點,,故顯然在上單調(diào)遞增,在上單調(diào)遞減,且與相鄰的整數(shù)點的函數(shù)值為:,,,,顯然有,要恰有兩個整數(shù)點,則為0和1,此時,解得:,如圖故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無極小值(2)【解析】(1)利用導數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導數(shù)求出的最大值即可求解.【小問1詳解】當時,,定義域為,當時,,單調(diào)遞增;當時,,單調(diào)遞減∴當時,取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無極小值【小問2詳解】由,得,令,只需.求導得,所以當時,,單調(diào)遞增,當時,,單調(diào)遞減,∴當時,取得最大值,∴k的取值范圍為18、(1)證明見解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點,分別以,,方向為x軸,y軸,z軸的正方向的空間直角坐標系,分別求得平面BCD的一個法向量和平面DCM的一個法向量,然后由求解【小問1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問2詳解】如圖,以A為原點,分別以,,的方向為x軸,y軸,z軸的正方向的空間直角坐標系,則,,,,,依題意,可得,設為平面BCD的一個法向量,則,不妨令,可得設為平面DCM的一個法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為19、(1)(,).(2)【解析】(1)根據(jù)條件列關(guān)于P點坐標得方程組,解得結(jié)果,(2)先根據(jù)點到直線距離公式結(jié)合條件解得點M坐標,再建立的函數(shù)解析式,最后根據(jù)二次函數(shù)性質(zhì)求最小值.【詳解】解:(1)由已知可得點A(-6,0),F(4,0)設點P(,),則={+6,},={-4,},由已知可得則2+9-18=0,解得=或=-6.由于>0,只能=,于是=.∴點P的坐標是(,).(2)直線AP的方程是-+6=0.設點M(,0),則M到直線AP的距離是.于是=,又-6≤≤6,解得=2.橢圓上的點(,)到點M的距離為,則,由于-6≤≤6,∴當=時,取得最小值.【點睛】本題考查直線與橢圓位置關(guān)系,考查基本分析求解能力,屬中檔題.20、(1);(2).【解析】(1)求出圓的半徑長,結(jié)合圓心坐標可得出圓的標準方程;(2)求出圓心到直線的距離,利用勾股定理可求得.小問1詳解】解:圓的半徑為,因此,圓的標準方程為.【小問2詳解】解:圓心到直線的距離為,因此,.21、(1)證明見解析(2)能為平行四邊形;斜率為4-或4+【解析】(1)設兩點坐標,由點差

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論