版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省宿遷市2026屆高二上數(shù)學(xué)期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在數(shù)列中,,則的值為()A. B.C. D.以上都不對(duì)2.已知等比數(shù)列中,,,則公比()A. B.C. D.3.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.直線的斜率是方程的兩根,則與的位置關(guān)系是()A.平行 B.重合C.相交但不垂直 D.垂直5.若,則n的值為()A.7 B.8C.9 D.106.已知數(shù)列滿足,,,前項(xiàng)和()A. B.C. D.7.若拋物線焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.8.已知實(shí)數(shù),滿足不等式組,則的最小值為()A2 B.3C.4 D.59.函數(shù)的定義域?yàn)?,,?duì)任意,,則的解集為()A. B.C. D.10.過點(diǎn)且垂直于的直線方程為()A. B.C. D.11.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.4012.已知數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足.若對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是()A., B.C., D.二、填空題:本題共4小題,每小題5分,共20分。13.已知內(nèi)角A,B,C的對(duì)邊為a,b,c,已知,且,則c的最小值為__________.14.已知向量,,若向量與向量平行,則實(shí)數(shù)______15.已知函數(shù)是函數(shù)的導(dǎo)函數(shù),,對(duì)任意實(shí)數(shù)都有,則不等式的解集為___________.16.已知、是空間內(nèi)兩個(gè)單位向量,且,如果空間向量滿足,且,,則對(duì)于任意的實(shí)數(shù)、,的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1是,,,,分別是邊,上兩點(diǎn),且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.18.(12分)某學(xué)校高一、高二、高三的三個(gè)年級(jí)學(xué)生人數(shù)如下表,按年級(jí)分層抽樣的方法評(píng)選優(yōu)秀學(xué)生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分層抽樣的方法在高一學(xué)生中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1名女生的概率;(3)用隨機(jī)抽樣的方法從高二女生中抽取8人,經(jīng)檢測她們的得分如圖所示,把這8人的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過5分的概率.19.(12分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2025年中國的汽車總銷量將達(dá)到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺(tái)16200元,第一年每臺(tái)設(shè)備的維修保養(yǎng)費(fèi)用為1100元,以后每年增加400元,每臺(tái)充電樁每年可給公司收益8100元(1)每臺(tái)充電樁第幾年開始獲利?(2)每臺(tái)充電樁在第幾年時(shí),年平均利潤最大20.(12分)已知是拋物線上的焦點(diǎn),是拋物線上的一個(gè)動(dòng)點(diǎn),若動(dòng)點(diǎn)滿足,則的軌跡方程.21.(12分)已知命題:“曲線表示焦點(diǎn)在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.22.(10分)已知圓關(guān)于直線對(duì)稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點(diǎn),若為等腰直角三角形,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由數(shù)列的遞推公式可先求數(shù)列的前幾項(xiàng),從而發(fā)現(xiàn)數(shù)列的周期性的特點(diǎn),進(jìn)而可求.【詳解】解:,數(shù)列是以3為周期的數(shù)列故選:【點(diǎn)睛】本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的項(xiàng),解題的關(guān)鍵是由遞推關(guān)系發(fā)現(xiàn)數(shù)列的周期性的特點(diǎn),屬于基礎(chǔ)題.2、C【解析】利用等比中項(xiàng)的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項(xiàng)的性質(zhì)可得,解得,又,,故選:C.3、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因?yàn)楹瘮?shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.4、C【解析】由韋達(dá)定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進(jìn)而可判斷兩直線的位置關(guān)系【詳解】設(shè)方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C5、D【解析】根據(jù)給定條件利用組合數(shù)的性質(zhì)計(jì)算作答【詳解】因?yàn)椋瑒t由組合數(shù)性質(zhì)有,即,所以n的值為10.故選:D6、C【解析】根據(jù),利用對(duì)數(shù)運(yùn)算得到,再利用等比數(shù)列的前n項(xiàng)和公式求解.【詳解】解:因?yàn)?,所以,則,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以,故選:C7、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D8、B【解析】畫出可行域,找到最優(yōu)解,得最值.【詳解】畫出不等式組對(duì)應(yīng)的可行域如下:平行移動(dòng)直線,當(dāng)直線過點(diǎn)時(shí),.故選:B.9、B【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷出函數(shù)在上的單調(diào)性,將不等式轉(zhuǎn)化為,利用函數(shù)的單調(diào)性即可求解.【詳解】依題意可設(shè),所以.所以函數(shù)在上單調(diào)遞增,又因?yàn)?所以要使,即,只需要,故選B.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性解不等式,解題的關(guān)鍵就是利用導(dǎo)數(shù)不等式的結(jié)構(gòu)構(gòu)造新函數(shù)來解,考查分析問題和解決問題的能力,屬于中等題.10、B【解析】求出直線l的斜率,再借助垂直關(guān)系的條件即可求解作答.【詳解】直線的斜率為,而所求直線垂直于直線l,則所求直線斜率為,于是有:,即,所以所求直線方程為.故選:B11、D【解析】根據(jù)等比數(shù)列的通項(xiàng)公式即可求出答案.【詳解】設(shè)該等比數(shù)列的公比為q,則,則.故選:D12、D【解析】由等差數(shù)列通項(xiàng)公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對(duì)任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據(jù)與的關(guān)系,求得,即可求得c的最小值.【詳解】,即,又,當(dāng)最大時(shí),即,最小,且為由正弦定理得:,當(dāng)時(shí),c的最小值為故答案為:【點(diǎn)睛】方法點(diǎn)睛:在解三角形題目中,若已知條件同時(shí)含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優(yōu)先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”;(4)代數(shù)變形或者三角恒等變換前置;(5)同時(shí)出現(xiàn)兩個(gè)自由角(或三個(gè)自由角)時(shí),要用到.14、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)?,所以存在?shí)數(shù)使得.故答案為:2.15、【解析】令則,∴在R上是減函數(shù)又等價(jià)于∴故不等式的解集是答案:點(diǎn)睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時(shí)要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對(duì)于,可構(gòu)造函數(shù);(2)對(duì)于,可構(gòu)造函數(shù)16、【解析】根據(jù)已知可設(shè),,,根據(jù)已知條件求出、、的值,將向量用坐標(biāo)加以表示,利用空間向量的模長公式可求得的最小值.【詳解】因?yàn)?、是空間內(nèi)兩個(gè)單位向量,且,所以,,因?yàn)?,則,不妨設(shè),,設(shè),則,,解得,則,因?yàn)椋傻?,則,所以,,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,對(duì)于任意的實(shí)數(shù)、,的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)、利用線面垂直的判定,及線面垂直的性質(zhì)即可證明;(2)、建立空間直角坐標(biāo)系,分別求出平面、平面的法向量,利用求出兩平面所成角的余弦值,進(jìn)而求出求二面角的正切值.【小問1詳解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小問2詳解】由(1)知:平面,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,平面的法向量為,則與,即與,..,觀察可知二面角為鈍二面角,二面角的正切值為.18、(1)400(2)(3)【解析】(1)根據(jù)分層抽樣的方法,列出關(guān)系式計(jì)算即可;(2)根據(jù)分層抽樣的方法,求出抽取的女生人數(shù),進(jìn)而列舉出從樣本中抽取2人的所有情況,可根據(jù)古典概型的概率公式計(jì)算即可;(3)求出樣本平均數(shù),進(jìn)而求出與樣本平均數(shù)之差的絕對(duì)值不超過5的數(shù),從而利于古典概型的概率公式計(jì)算即可.【小問1詳解】設(shè)該???cè)藬?shù)為n人,由題意得,所以,.【小問2詳解】設(shè)所抽樣本中有m個(gè)女生,因?yàn)橛梅謱映闃拥姆椒ㄔ诟咭粚W(xué)生中抽取一個(gè)容量為5的樣本,所以,解得.所以抽取了2名女生,3名男生,分別記作,;,,,則從中任取2人的所有基本事件為:,,,,,,,,,,共10個(gè),其中至少有1名女生的基本事件有,,,,,,,共7個(gè),所以從中任取2人,至少有1名女生的概率為.【小問3詳解】樣本的平均數(shù)為,那么與樣本平均數(shù)之差的絕對(duì)值不超過5的數(shù)為94,86,92,87,90,93這6個(gè)數(shù),總的個(gè)數(shù)為8,所以該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過5的概率為.19、(1)公司從第3年開始獲利;(2)第9年時(shí)每臺(tái)充電樁年平均利潤最大3600元【解析】(1)判斷已知條件是等差數(shù)列,然后求解利潤的表達(dá)式,推出表達(dá)式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養(yǎng)費(fèi)用是以1100為首項(xiàng),400為公差的等差數(shù)列,設(shè)第n年時(shí)累計(jì)利潤為f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),開始獲利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司從第3年開始獲利;(2)每臺(tái)充電樁年平均利潤為當(dāng)且僅當(dāng),即n=9時(shí),等號(hào)成立即在第9年時(shí)每臺(tái)充電樁年平均利潤最大3600元【點(diǎn)睛】本題考查數(shù)列與函數(shù)的實(shí)際應(yīng)用,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題20、【解析】由拋物線的方程可得到焦點(diǎn)坐標(biāo),設(shè),寫出向量的坐標(biāo),由向量間的關(guān)系得到,將點(diǎn)代入物線即可得到軌跡方程.【詳解】由拋物線可得:設(shè)①在上,將①代入可得:,即.【點(diǎn)睛】求軌跡方程,一般是求誰設(shè)誰的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對(duì)于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進(jìn)行運(yùn)算也可以轉(zhuǎn)化為斜率來理解,然后借助韋達(dá)定理求解即可運(yùn)算此類題計(jì)算一定要仔細(xì).21、(1);(2).【解析】(1)根據(jù)方程為焦點(diǎn)在軸上的橢圓的條件列不等式組,解不等式組求得的取值范圍.(2)求得為真命題時(shí)的取值范圍,結(jié)合是的必要不充分條件列不等式組,解不等式組求得的取值范圍.【詳解】(1)若是真命題,所以,解得,所以的取值范圍是.(2)由(1)得,是真命題時(shí),的取值范圍是,為真命題時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026青海西寧城西區(qū)西部礦業(yè)集團(tuán)有限公司黨務(wù)工作部門業(yè)務(wù)崗位選聘5人參考考試試題附答案解析
- 酒廠生產(chǎn)廠長規(guī)章制度
- 2026湖南長沙市雨花區(qū)中雅培粹雙語中學(xué)合同制教師招聘參考考試題庫附答案解析
- 生產(chǎn)體系交付管理制度
- 生產(chǎn)企業(yè)招聘制度
- 2026甘肅白銀市平川區(qū)容通水務(wù)有限公司招聘9人備考考試題庫附答案解析
- 生產(chǎn)車間雙面膠管理制度
- 2026河南鄭州管城回族區(qū)嵩陽學(xué)校(小學(xué)部)招聘3人參考考試題庫附答案解析
- 造紙廠鍋爐安全生產(chǎn)制度
- 安全生產(chǎn)指揮官制度
- 2025年山東省濟(jì)南市中考英語真題卷含答案解析
- 侍酒師崗前實(shí)操操作考核試卷含答案
- 2025-2026學(xué)年六年級(jí)英語上冊(cè)期末試題卷(含聽力音頻)
- 【一年級(jí)】【數(shù)學(xué)】【秋季上】期末家長會(huì):花開有“數(shù)”一年級(jí)路【課件】
- 2025四川成都高新區(qū)婦女兒童醫(yī)院招聘技師、醫(yī)生助理招聘5人參考題庫附答案解析
- 2026年高考語文復(fù)習(xí)散文閱讀(四)
- 中建通風(fēng)與空調(diào)施工方案
- GB/T 3683-2023橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強(qiáng)液壓型規(guī)范
- 高考語言運(yùn)用題型之長短句變換 學(xué)案(含答案)
- 2023年婁底市建設(shè)系統(tǒng)事業(yè)單位招聘考試筆試模擬試題及答案解析
- GB/T 16823.3-2010緊固件扭矩-夾緊力試驗(yàn)
評(píng)論
0/150
提交評(píng)論