版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AIasGameChanger|Authors&ContactpersonAIasGameChanger|LeadAugustinFriedelSoftwareDefinedVehiclesAugustin.Friedel@LeadMatthiasBorchArtificialMatthias.Borch@ContactStephanBaierArtificialStephan.Baier@
AuthorMarcusWillandMobilityMarcus.Willand@AuthorDr.NilsSchaupensteinerTransformationAdvisoryNils.Schaupensteiner@AuthorPatrickRuhlandTransformationAdvisoryPatrick.Ruhland@Thestudy“AIasGameChanger“anditssummarywerepublishedby:MHPGesellschaftfürManagement-undIT-BeratungmbHAllrightsreserved!Noreproduction,microfilming,storage,orprocessinginelectronicmediapermittedwithouttheconsentofthepublisher.Thecontentsofthispublicationareintendedtoinformourcustomersandbusinesspartners.correspondtothestateofknowledgeoftheauthorsatthetimeofpublication.resolveanyissues,pleaserefertothesourceslistedinthepublicationorcontactthedesignatedcontactpersons.Opinionarticlesreflecttheviewsoftheindividualauthors.Roundingdifferencesmayoccurinthegraphics.3ContentsContents 4offigures 612KeyFindings 8WelcometoChange! 10RevolutionandAutomotiveMarketPotential 11InvestmentinCompaniesWithanAIFocus 15PilotProjectsandImplementation 19AIModels,Levels,andUseCases 23TheGameChanger:WhatCanBeAchievedWithAI 26AutomobileManufacturersWithLowAIInvestment 29AIModels:MakeorBuy? 29AIApplicationsAlongtheAutomotiveChain 31AIOperationinVehiclesandintheCloud 35AIMonetizationinVehicles 39AddedofAIApplicationsinCompanies 40WhattheCustomerWants:TheUserPerspective 47UseandUnderstandingofAIApplications 49AdvantagesandDisadvantages–GenerallyandinVehicles 49PurchasingDecision,andWillingnesstoPay 514AIasGameChanger|AIasGameChanger|ContentsSuccessFactorsandStrategicApproach 55StrategyandGoalPlanning 56ThinkfromthePerspectiveofthenotthe56OrganizationalAnchoringandOwnership 58LocalDifferencesrequirelocalSetup 59ReducingComplexity 59UseandMonetizationofData 60ChecklistforsuccessfulImplementation 61Challenges,Responsibility,andRisks 63CostsofandOperation 64DataandDigitalizationasaBasis 65BusinessModelsandCasesforB2CandB2B 65EthicsandResponsibility 67NewRisksandRegulatoryChallenges 69AIApplicationsintheAutomotiveIndustry:7RecommendationsforAction 7110.FurtherInformations 75LiteratureandSources 76ContactInternational 78AboutMHP 795ofFigure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift(Coatue,2024) 12Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024) 12Figure3:investmentsinAIcompaniesfoundedsince2001,inUSDbillion2024) 16Figure4:InvestmentinAIstacklayers(Coatue,2024) 17Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023) 21Figure6:InterconnectedAIconcepts 24Figure7:VisualizationofAIasapyramid 25Figure8:ClassificationofAIterms 27Figure9:TheperformanceofAImodelscomparedtohumancapabilitiesintheMMLUtest(iAsk,2024) 28Figure10:SchematicdiagramofthetrainingofAIfoundationmodelsforvehicles 30Figure11:UseofAIalongthevaluechain 32Figure12:SignificantimprovementsoffunctionsandfeaturesthroughAI 33Figure13:InterestinAIfunctionscomparedinternationally 34Figure14:Roleofon-premise,cloud,andvehicleforAImodels 35Figure15:Levelsofasoftware-definedvehicle(SDV)(Willand,Friedel,&Schaupensteiner,2023) 36Figure16:DifferentmodelsforADASandADapplicationsandfunctions 37Figure17:potentialatdifferentstagesofthevaluechain(Capgemini,2023) 40Figure18:UseofAI-basedsolutionsbyregion 41Figure19:KeydriversbehindtheuseofAIinproduction 426AIasGameChangerAIasGameChanger|TableoffiguresFigure20:Decisiveissue–fewerusersofsoftwareduetoAIorfreesoftware(Coatue,2024) 43Figure21:PossibleusesofAIinsoftwaredevelopment(Wee2024) 44Figure22:UnderstandingofAIincars 48Figure23:AdvantagesofusingAIincars 49Figure24:TheperceivedadvantagesanddisadvantagesofusingAI 50Figure25:AIincars:purchasemotivationorblocker? 51Figure26:instakeholderswithregardtotheimplementationofAIinvehicles 52Figure27:WillingnesstopayforAIfunctions 52Abb.28:AssessmentofthefutureAIcompetenceofcarmanufacturersbyregion 53Figure29:Customerandusecasefirst,andthenAIapplicationsandmodels 57Figure30:Dimensionsforvalidatingtechnicalfeasibility 57Figure31:costsforAImodelsareincreasing(StanfordUniversity,2024) 64Figure32:Dataavailabilityandqualitybyregion 65Figure33:Customers’willingnesstopayisunclear;costsariseforimplementationandoperation 66Figure34:ClassificationofAIusecasecategoriesandpossiblebusinessmodels 67Figure35:RisksassociatedwiththeuseofAI 68Figure36:PrinciplesandpenaltiesoftheEUAIAct 701:ThedevelopmentofAImodelsdividedintodifferenttimephases 27712KeyFindingsThewidespreaduseofAIispredictedtobethenextrelevantplatformshiftaftercloudtransformation–originalequipmentmanufacturers(OEMs)needtostepuptheiractivities.MorethanOnlyofrespondentsseetime-savingasthebiggestbenefitofAIapplications.SkepticismaboutAIapplicationsisgreaterintheUSthaninEuropeorChina.
ofrespondentsinChinastatethattherisksofAIoutweighthebenefits;thisfigureisaround25inEuropeandtheUS.ThemostfrequentlymentioneddisadvantagesofAIarefearoflossofcontrol,lossofdataandpersonalprivacy,andsecurityrisks.8CustomersworldwidewanttouseAIincars,butrarelypayforit. KIInChina,AIfunctionsmostlyhaveapositiveinfluenceoncarpurchasingdecisions–onlyofrespondentswouldnotbuyavehiclebasedonAIfunctions.
ChinesecarmanufacturersareregardedasleadersinAIinnovation.Infiveyears’time,JapaneseOEMsbeattheforefront,followedbyChineseandGermanOEMs.AIisnotonlyrevolutionizingthein-vehiclecustomerexperience–theentirevaluechainisexperiencingdisruptivechange.carmanufacturersarethemosttrustedwhenitcomestotheuseofAI,faraheadofstateinstitutionsnewcarmanufacturers.
SuccessfulimplementationofAIapplicationsisnotpossiblewithoutpriordigitalizationandaccesstospecificdatasources.AIasGameChanger|AIasGameChanger|12KeyFindings9WelcometoChange!Dearreaders,Artificialintelligencewillbethenextplatformshiftthatrevolutionizesallindustrialsectors.StakeholdersintheautomotivevaluechainhaverealizedthatAIischallengingmanytradi-tionalprocessesandwaysofthinking.TheintroductionofthePC,thestationaryInternetandthenthemobileInternet,andCloud/SaaSpreviouslyhadasimilarlydisruptiveimpact.Newbusinessmodelsandprofitpoolsareemerging,whileatthesametimetherearenu-merouschallengestobetackledwithregardtotechnology,partnerships,andethicalissues.Inthisstudy,wetracethegroundbreakingdevelopmentsinAIsofarandexaminetheop-portunitiesandriskswithintheautomotiveindustry.Accompanyusthroughpresentfuturescenarios–withspecificrecommendationsforactionforyourownstrategywhenitcomestoimplementingAIapplicationsinproductionandinvehicles.Whetherthenewtechnologiesmeettheexpectationsofdriversisdeterminedrightthereinthecockpit.why,inChapter8,weoutlinetheuserperspectivebasedonourowncurrentdata.OurinternationalsurveyprovidesinformationaboutwhichproductsservicesfromautomotivecompaniescouldfulfillAIneedsandwhatthewillingnesstolookslike.Thatmakesthisstudyessentialreadingfordecision-makers,CIOs,andapplica-tiondevelopers.InvestorsinAItechnologiesandAIteamsneedaconsistent,long-termcost-benefitWethereforeexaminethedirect/indirectmonetizationofin-carAIandlookatnewbusinessmodelsbasedonAIanddigitalization.Ultimately,asissooftenthecase,itbecomesclearthatthejourneyintonewtechnologicalterritoryisbestundertakenwithexperiencedtravelguides.Gettheknow-howyouneed–andalwaysbecurious!ENABLINGYOUTOSHAPEABETTERTOMORROWBestregards,Dr.JanWehingerClusterLeadSoftwareDefinedVehiclesMHPManagement-undIT-BeratungGmbHLudwigsburg,September202410本報告來源于三個皮匠報告站(),由用戶Id:349461下載,文檔Id:183532,下載日期:2024-12-04AIasGameChanger|AIasGameChanger|01.RevolutionandAutomotiveMarketPotential01.RevolutionandAutomotivePotential11EveryonerecognizesthatAIisthenextplatformshiftDesktopInternet(Web1.0)DesktopInternet(Web1.0)MobileInternet(Web2.0)Cloud/SaaSGenerativeAINetworkingPCMainframe1960–1980
1980s
1990s
2000s
2010s
2015–2020
2022–...Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift(Coatue,2024)AI-BasedsystemsforautomotiveindustrytoreachUS$35.7billionby203335.726.626.6...inbillionUS$20.05.87.32023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)12ItishighlylikelythatthebigtechnologycompaniessuchasGoogle,Meta,andMicrosoft–whichgainedinimportancewiththelastplatformshifts(supercy-cles)–willalsodominatetheAIage.Alongtheautomotivevaluechain,stakeholderssometimesaccusedofhavingrespondedtotheplatformshiftstoolateorwithanineffectivestrategy.Inouropinion,therelevanceofconnectivityandsolutionswasrecognizedtoolateandimplementationcouldhavebeenTheindustryisattheningoftheAIplatformshiftandthereisstilltheportunitytorespondearlywithatargetedstrategy.CompanieslikeApplehaveshownthatitisnotneces-
OneisthatartificialintelligenceincreasinglyreplacepeopleandjobsmayCurrently,AIapplicationsareregardedmoreasaplementratherthanareplacement.AcademicsasKarimLakhanifromHarvardBusinessSchoolbelievethatAIwillnotreplacehumans.OnepossiblescenarioisthatpeoplewhouseAIwillhaveasignificanttageoverworkerswhodonotuseit.RegardingthequestionofwhetherAIwillimproveeconomy,asurveyshowsamixedpicture.34percentofrespondentsbelievethattheuseofwillimprovetheeconomicsituationintheircountryinthenextthreetofiveyears.Thishopeisabove“AIWon’tReplaceHumans—ButHumansWithAIWillReplaceHumansWithoutAI.”(HBR,2023)sarytobethefirstinnovator.WithastrongAIstrategy,acompanycanalsoexploitpotentialasafastThemarketforartificialintelligenceintheautomotiveindustryhasshownremarkablegrowthinrecentItiscurrentlyestimatedtobearoundUSD3.9billionin2024andisexpectedtogrowtoUSD15billionby2030.SomemarketanalysesanticipatethatAIsalestheautomotivesectorwillrisetooverUSD35billionin2033.Growthfrom2024to2033correspondstorateof28percent.Estimatesinothermarketreportsmaybeslightlyerorbutallshowthesametrend.Thisthatextensiveeconomicopportunitiesarebeingedalongthevaluechainformanufacturers,suppliers,andserviceproviders.
incountriessuchasThailand,India,andSouthAfrica.Atthelowerendoftherankingarecountriesinclud-ingBelgium,Japan,theUS,andFrance(Ipsos,2023).Overall,thereareincreasingsignsthattherearemoreopportunitiesthanrisks.Thetargeteduseofarti-ficialintelligencewillsignificantlyaffectourinthecomingdecades.AIboostsefficiencyandcounterthenegativeeffectsofskillsshortages,graphicchanges,andhighlocationcosts.Itisnowuptotheautomotiveindustrytotakeboldandatelyfastaction–andfollowastrategicallyintelligentapproach.AIasGameChangerAIasGameChanger|01.RevolutionandAutomotiveMarketPotential1314AIasGameChanger|AIasGameChanger|02.InvestmentinCompaniesWithanAIFocus02.InvestmentinCompaniesWithanAIFocus15Magnetforinvestment:investmentinAIcompaniesfoundedsince2001inbillionsofUSdollars39.6Bn.US$39.6Bn.US$234.1Bn.US$41.7bn.SiliconValleyAlookatthedistributionofAIinvestmentshowsthedominanceofthoseregionsthatalsodominatedthemarketinthelastplatformshifts(seeCoatue,2024;Figure1).Itcanbeassumedthattheautomotivein-dustrywillcontinuetobedependentonhyperscalersandtechnologycompanies.Collaborationsregardingsoftware,cloudapplications,andtheuseofAIareex-pectedtoincrease.AnanalysisshowsthatalargeshareoftheinvestmentinAIcompaniescomesfromtheUS.Acloser(Coatue,2024)showsthatonlyapprox.3percenttheventurecapitaldealshaveaclearlinktoAI,butthat15percentoftheinvestedcapitalflowsintostart-ups.Fromthisimbalance,itcanbeconcluded
thatthemarketseesrelativelyhighvaluationscorrespondinglyhighinvestmentrounds.Thefinanc-ingroundsshowthatmostoftheinvestmentsin2024wentintocompaniesthatdevelopAImodelssuchasMistral,andClaude.AtotalofUSD14lionwasinvestedinAImodelsinthefirsthalfoftheThisequatesto62percent.In2024,asmallerproportionofthecapitalinvestedAIcompanieswentintofirmsthatdevelopsemicon-ductorsforAIapplications.Roboticsapplications,ashumanoidrobots,garneredapprox.USD2billionincapital,whichcorrespondstoaround9percentofthetotal.101.2bn.US$101.2bn.US$16AmongthelargestinvestorsintheAIfieldaremajortechnologycompaniesincludingAmazon,NVIDIA,andAlphabetcompany).In2023,thesecompaniesinvestedUSD25billionandwerethusresponsiblefor8ofinvestment.Carmanufacturers’investmentsincompaniesdealwithartificialintelligencearemoremodest.aresomeexamples:InvestmentsbyNIOCapitalMomenta:Start-upwithafocusonautonomousingandonthedevelopmentoftechnologiesforronmentalperceptionandhigh-precisionmappingPony.ai:Companyfocusingonautonomousdriving;itformspartnershipstodevelopmobilitysolutionsBlackSesameTechnologies:CompanyspecializinginAIchipsandsystems
InvestmentsbyBMWiVenturesAIasGameChanger|02.InvestmentinCompaniesWithanAIFocusAlitheon:SpecializesinopticalAItechnologyforjectidentificationandauthenticationwithAIasGameChanger|02.InvestmentinCompaniesWithanAIFocusRecogni:Focusesonhigh-performanceAIwithlowpowerconsumptionforautonomousvehiclesAutoBrains:DevelopsAIsolutionsfortheautomotiveindustry,particularlyinthefieldofautonomousdriv-ingtechnologiesInvestmentsbyPorscheSensigo:DeveloperofanAI-supportedplatformforoptimizingvehiclediagnosticsandrepairprocessesWaabi:CanadiandeveloperofAI-basedsolutionsforself-drivingtrucksAppliedIntuition:Providessoftwaresolutionsforthedevelopmentofdriverassistancesystemsandauton-omousdrivingCresta:Specializesinreal-timeintelligenceforcustom-erinteractionsandcommunicationsolutionsWhereareAIVCdollarsgoing?Funding 1008060400
62%AI
20%AIApps
9%AIOps/AICloud
9%AI
<1%AISemisFigure4:InvestmentinAIstacklayers(Coatue,2024)1718AIasGameChanger|03.PilotProjectsandImplementationAIasGameChanger|03.PilotProjectsandImplementation03.PilotandImplementation19Withoutcomprehensivepriordigitalization,theimplementationofAIapplicationswillbeaninsurmountablechallenge.CarmanufacturersandsuppliersshouldallocatebudgetsforAIandbuildupexpertisepromptly. 20Intheautomotiveindustry,amixediswithtotheacceptanceandimplementationAIapplicationsalongthevaluechain.Thelevelofplementationislowamongsuppliersanddealersinservices.Automobilemadefurtherintermsofimplementation,ispotentialforLookingattheautomotiveindustryasawhole,4percentofcompanieshavebeguntoimplementapplicationsatselectedlocations.Thatisaroundasmuchasinthepharmaceuticalindustry.InthefigureisfourtimesSome28percentcompaniesintheautomotivevaluechainareonAIpilotprojects,andthevastmajority(68percent)arestillatexplorationstage(CapgeminiResearchstitute,2023).
Only30percentofthecompaniesintheautomotivesectorhaveadedicatedteamandanextrabudgettheintroductionandimplementationofAIparison,therateis62percentinretail,74percentinthehigh-techand52percentindefense.(Capgemini,2023)AIasGameChanger|03.PilotProjectsandImplementationInterimconclusion:TheautomotivementinAIhasbeenbelowaveragetodate;thisbudgetsandspecializedteams.GiventhehugeofAIontheindustry,itisadvisabletothistionAIasGameChanger|03.PilotProjectsandImplementationProportionofcompanieswithadedicatedteamandbudgetforAI30%74%62%30%74%62%52%36%40%
High
Retail defense
Tele-communi-cationsFigure5:CompanieswithteamandbudgetforAI(Capgemini,2023)2122AIasGameChanger|AIasGameChanger|04.AIModels,Levels,andUseCases04.AIModels,Levels,andUseCases23InterconnectedAIconceptsEachconceptisaspecializedpartoftheoneprecedingit.Figure6:InterconnectedAIconceptsAIcoversawidefieldthatcanbedividedintoseveralareasandtermsusingahierarchicaldiagram:ArtificialIntelligence(AI):Researchareafocusingonthecreationofintelligentmachines.Machinelearning(ML):BranchofAIfocusingonthedevelopmentofmachinesthatcanlearnfromdata.Deeplearning:Asub-categoryofmachineingbasedonartificialneuralnetworks.Examplesconvolutionalneuralnetworks(CNNs)andneuralnetworks(RNNs).GenerativeAI:Aspecialtypeofartificialneuralnet-worksthatgeneratedatasimilartothetrainingdata.Examplesaregenerativeadversarialnetworks(GANs)andlargelanguagemodels(LLMs).WithAIapplications,variouscategoriesofusecasescanbeimplemented:Datamanagement:Thisinvolvesharmonizingdataandobtainingfindings.Itisessentialforefficientuseofinformation.
Patternrecognition:Thiscategoryincludesanomalydetection,categorization,andprediction,andalsotimeseriesanalysis.Thesetechniquesen-abletheidentificationoftrendsandpatternsinlargedatasets.Decision-making:Includesrecommendationsys-temsandrecommendedactionsbasedondataanalyses.Theseareusedtosupportdecision-mak-ingprocesses.Textandimageprocessing:Includessemanticsearch,textsummaries,andtranslations,whichenabletheprocessingandanalysisoftextandim-agedata.Communication:Thiscategoryincludesvoicerec-ognition,chatbots,voicecontrol,intelligentpro-cessautomation,andvoiceoutput,whichfacili-tateshuman-machineinteraction.Creativityandcontentgeneration:Thegener-ationoftextsandimagescanautomateandaccel-eratecreativeprocesses.24AIsystemscanbevisualizedasapyramidwithaberoflayers.Thelowestlayerdescribesthecomputingpowerrequiredfortheotherlayers.CompaniesasNVIDIA,ARM,andAMDareestablishedcompaniesthatprovidechipsetsandhigh-performancecomput-ersforthisPerformancehasdevelopedrapidlyrecentyears.Forexample,marketleaderNVIDIAlivereda1000-foldincreasebetween2016and2024.Thesecondlayerfrombottomconsistsofcloudfrastructureandenablers.Thebiggest,mostknowncompaniesthatprovidetheinfrastructurearecompaniessuchasAmazonwithAWS,AlphabetwithGoogleCloud,andMicrosoftwithAzure.Asthecloudcomputingsegment,theprovidersaregion-specific.InChina,theinfrastructurelayeris
eratedbycompaniessuchasTencent,Alibaba,andBaidu;theyareamongthechipproviders’largestcus-tomers.AIasGameChanger|AIasGameChanger|04.AIModels,Levels,andUseCasesUsersmostlikelycomeintocontactwiththeapplica-tionlayeroftheAIpyramid,forexamplewhentheyaskaquestionintoolslikeChatGPTfromOpenAI,ClaudefromAnthropic,orGeminifromGoogle.VisualizationofAIasapyramidTrainingConvenienceTrainingConvenienceADAS/ADApplicationsFoundationalmodelsInfrastructure&enablerSemiconductorecosystemOutsidevehicle(e.g.cloud)Invehicle(e.g.computeunits,software)Figure7:VisualizationofAIasapyramidOutsidevehicle(e.g.cloud)Invehicle(e.g.computeunits,software)25ItisimportanttodistinguishbetweentheingAIterms:AImodelsaremathematicalandstatisticalcon-structsthataredevelopedandtrainedtocarryoutspecifictasksbasedondata.AIcomponentsconsistofAImodelsandincludeapipelineforprocessinginputandoutputdata.coverpreprocessing(processingofrawdata)andprocessing(preparationofresults).AIcapabilitiesarespecificfunctionsorthattheAIsystemcanexecute,suchasvoiceorrecognition.AIusecasesdefinethepurposeandcontextinwhichAIcapabilitiesareapplied.Ausecasecanin-cludeseveralAIcapabilities.Figure8showshowtheseelementsbuildononean-other.TheGameChanger:WhatCanBeAchievedWithAIThedevelopmentofAImodelscanbedividedintoferenttimephases.Wearecomingoutofthephaseartificialnarrowintelligence(ANI),whichwasbymachinelearningandapplicationslikeSiriandexa.GenerativeAImodelscanberegardedasadevel-opmentalsteponthepathtoartificialgeneralgence(AGI).Inthisphase,machineswouldbeablematchhumansinawiderangeofcognitiveabilities.Inthephaseofartificialsuperintelligence(ASI),AIplicationsandmachineswithembeddedAIwillsurpassedhumansasregardscognitiveabilities.
TheuseofAIwillbecomeagamechangerbecausethetechnologyenablesthefollowingfunctionsforfirsttime:HumaninteractionFeatures:Abilitytohavecolloquialandmulti-levelconversations,aswellasusecontextandmemoryImportance:ThesecharacteristicsenableAIcommunicatemorenaturallyandintuitivelypeople–particularlycrucialforapplicationsasvirtualassistants.HumanthinkingFeatures:Logicalthinking,thecreationofworldmodelsandpredictiveabilitiesImportance:Theseabilitiesareimportantforsolvingcomplexproblemsandmakingwell-foundedsions,similartoahuman.VisualunderstandingFeatures:Profoundinterpretation,opensetofcon-clusions,understandingofconsequencesImportance:TheseaspectsenableAItoanalyzeandinterpretvisualdata,whichisimportantinareassuchasimageprocessingandautonomousnaviga-tion.Internet-scalableknowledgeFeatures:Trainingonextensivetextualandvisualdata,adaptationtonewsituations,awarenessoflocalcustomsandsignsImportance:ThesecharacteristicsenableAItoin-tegrateknowledgefromavarietyofsourcesandapplyitindifferentcontexts.26AIasGameChanger|AIasGameChanger|04.AIModels,Levels,andUseCasesAIusecasesEmbeddingAIcapabilitiesAIusecasesEmbeddingAIcapabilitiesAIcomponentsAImodelsPreprocessingPostprocessingOutputFigure8:ClassificationofAItermsAImodeldividedintophasesArtificialNarrowIntelligence(ANI)GenerativeArtificalIntelligenceArtificialGeneralIntelligence(AGI)ArtificialSuperIntelligence(ASI)TodayInthenextfewyearsExample:Siri,AlexaExample:OpenAIMachineLearningMachineIntelligenceMachineConsciousnessReturnsanswersbasedonexistingdata,basedonalgorithmsandstatisticaltechniques.AIcancreatedatainstancesindependently.Notyetclosetohumanintelligence.Comparablewithacomputerthatcomesclosetohumanintelligenceinallareas.Intellectthatissuperiortohumansinmanyorareas.AIcannotcreatedatainstancesindependently.Table1:ThedevelopmentofAImodelsdividedintodifferenttimephases27AItechsimpletoolsthatcanbeusedtoshowthepossibleusesofAI.Themethodallowsthedocumentationofapplicationexamples,addedandlimitsofAIapplications.Inyears,thecapabilitiesofAImodelshavecontinuouslyForsometasks,thecomingclosetohumancapabilities.InabenchmarktestcalledMassiveMultitaskLanguagederstanding(MMLU),whichwasdevelopedtoatelanguagemodels,modelsachievingcuracyvaluesof86to94Thehumanopinionis89.8percent.ThismeansthefirstAIperformingbetterthanhumanexperts(iAsk,TheMMLUtestconsistsof57tasksthefieldsofmathematics,UShistory,andMeasuringMassiveMultitaskLanguageUnderstanding(MMLU)Ranking100%93.8995% ExpertAGI:93.0%93.8990%85%80%75%GPT-4oGeminiGPT-4oGeminiGPT-4Qwen2MistralLlama3Yi-largeProInstructLarge2
Humanexpert:89.8% 86.584.584.282.782.482.480.079.379.3iAskProClaude3.586.584.584.282.782.482.480.079.379.3Sonnet
Llama3.1TurboFigure9:TheperformanceofAImodelscomparedtohumancapabilitiesintheMMLUtest(iAsk,2024)28AutomobileManufacturersWithAIInvestmentBasedondifferentresearch(Shilov,2023),(Mu,itcanbeassumedthatNVIDIAsoldapprox.500,000to620,000H100andA100chipsin2023.450,000ofthechipswerepurchasedbybigtechhyperscalercompaniesincludingAmazon,Meta,andAlphabet.Advanceddriverassistancesystems(ADAS)supportdriversincertaindrivingsituations,in-creasesafety,andenhancedrivingcomfort.Automated/autonomousdriving(AD):self-drivingvehiclesInferenceistheprocessthatatrainedmachinelearningmodelusestodrawconclusionsfromnewdata.Example:Aself-drivingcarrecognizesastopsignonaroadithasneverdrivenonbefore.TheabilitytorecognizethisstopsigninacompletelynewcontextindicatesanAImodelcapableofmak-inginferences.OneofthefewautomotivemanufacturerstoupcomputingpoweronalargescaleisByendof2024,thenumberofH100GPUsisedtoincreasefrom35,000to85,000(Walz,2024).ThesupercomputeratwillbeusedtotrainmodelsfortheADAS(advanceddriverassistancesystems),amongotherthings.TheinferenceofAdvanceddriverassistancesystems(ADAS)supportdriversincertaindrivingsituations,in-creasesafety,andenhancedrivingcomfort.Automated/autonomousdriving(AD):self-drivingvehiclesInferenceistheprocessthatatrainedmachinelearningmodelusestodrawconclusionsfromnewdata.Example:Aself-drivingcarrecognizesastopsignonaroadithasneverdrivenonbefore.TheabilitytorecognizethisstopsigninacompletelynewcontextindicatesanAImodelcapableofmak-inginferences.OtherautomotivemanufacturershavesofarbeenluctanttoinvestintheirowndatacenterswhichbeusedforAIapplications.ItistobeassumedtheywillusethedatacentersoflargetechnologypaniestotrainAIapplicationsandrunthem
ForecastspredictthatthedemandforcomputingpacityfortheinferenceofmodelswillincreaseinlongtermandthatthedemandforAItrainingwillclineinrelativeterms.Inferencecantakeplaceinthecloudorinprocessingunitsinthevehicles.partofthedevelopmentofsoftware-definedvehicles(SDV),thecomputingpowerinstalledinthevehicleswillcontinuallyincrease,whichispositivefortheofAIapplicationsinvehicles.Distributionoftheofcomputingpowerinthecloudorinthevehiclede-pendsverymuchontheusecases.AIModels:MakeorBuy?Anumberoflargelanguagemodelsareinexistencealready,andagreatdealoftimeandmoneyhasspentondeveloping
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 不銹鋼真空容器制作工變革管理能力考核試卷含答案
- 網絡預約出租汽車司機復測水平考核試卷含答案
- 鎖具修理工崗前工作效率考核試卷含答案
- 磁法勘探工崗前客戶關系管理考核試卷含答案
- 光纖著色并帶工安全防護測試考核試卷含答案
- 公司賬號合同范本
- 承包捕魚合同范本
- 鐵礦選礦合同范本
- 香港克斯合同范本
- 技術股份合同范本
- 安全管理制度(敬老院)
- 礦山破碎設備安全操作規(guī)程
- 2025年及未來5年中國氙氣行業(yè)市場發(fā)展數(shù)據監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 2024年全國職業(yè)院校技能大賽ZZ054 智慧物流作業(yè)賽項賽題第2套
- 2025年藝術史西方藝術史試卷(含答案)
- 冶煉廠拆遷施工方案
- 谷物烘干機結構設計
- 檢修安全培訓內容課件
- 智慧樹知道網課《思想政治理論綜合實踐(太原理工大學)》課后章節(jié)測試答案
- 人教版小學1-6年級數(shù)學公式大全版
- 《勸學》課件+2025-2026學年統(tǒng)編版高一語文必修上冊
評論
0/150
提交評論