湖北省恩施一中、利川一中等四校2025-2026學年數(shù)學高一上期末調(diào)研試題含解析_第1頁
湖北省恩施一中、利川一中等四校2025-2026學年數(shù)學高一上期末調(diào)研試題含解析_第2頁
湖北省恩施一中、利川一中等四校2025-2026學年數(shù)學高一上期末調(diào)研試題含解析_第3頁
湖北省恩施一中、利川一中等四校2025-2026學年數(shù)學高一上期末調(diào)研試題含解析_第4頁
湖北省恩施一中、利川一中等四校2025-2026學年數(shù)學高一上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

湖北省恩施一中、利川一中等四校2025-2026學年數(shù)學高一上期末調(diào)研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設R,則“>1”是“>1”的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.在空間給出下面四個命題(其中、為不同的兩條直線),、為不同的兩個平面)①②③④其中正確的命題個數(shù)有A.1個 B.2個C.3個 D.4個3.已知函數(shù),且,則A. B.C. D.4.在某次測量中得到的樣本數(shù)據(jù)如下:.若樣本數(shù)據(jù)恰好是樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則兩樣本的下列數(shù)字特征對應相同的是()A.眾數(shù) B.平均數(shù)C.標準差 D.中位數(shù)5.已知,則下列結(jié)論正確的是()A. B.C. D.6.已知集合,若,則()A.-1 B.0C.2 D.37.已知向量且,則x值為().A.6 B.-6C.7 D.-78.在下列區(qū)間中函數(shù)的零點所在的區(qū)間為()A. B.C. D.9.已知函數(shù)的圖象上關于軸對稱的點至少有3對,則實數(shù)的取值范圍是A. B.C. D.10.函數(shù)的圖象大致為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小值為__________12.若,則______13.已知函數(shù),且函數(shù)恰有兩個不同零點,則實數(shù)的取值范圍是___________.14.梅州城區(qū)某公園有一座摩天輪,其旋轉(zhuǎn)半徑30米,最高點距離地面70米,勻速運行一周大約18分鐘.某人在最低點的位置坐上摩天輪,則第12分鐘時,他距地面大約為___________米.15.已知函數(shù),的圖像在區(qū)間上恰有三個最低點,則的取值范圍為________16.已知曲線且過定點,若且,則的最小值為_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù).(1)若不等式的解集為,求實數(shù)a,b的值;(2)若,且存在,使成立,求實數(shù)a的取值范圍.18.如圖,四棱錐的底面為矩形,,.(1)證明:平面平面.(2)若,,,求點到平面的距離.19.如圖所示,已知平面平面,平面平面,,求證:平面.20.已知函數(shù)的部分圖象如圖所示.(1)求的解析式;(2)若,求的最值以及取得最值時相應的的值.21.為持續(xù)推進“改善農(nóng)村人居環(huán)境,建設宜居美麗鄉(xiāng)村”,某村委計劃在該村廣場旁一矩形空地進行綠化.如圖所示,兩塊完全相同的長方形種植綠草坪,草坪周圍(斜線部分)均擺滿寬度相同的花,已知兩塊綠草坪的面積均為400平方米.(1)若矩形草坪的長比寬至少多9米,求草坪寬的最大值;(2)若草坪四周及中間的花壇寬度均為2米,求整個綠化面積的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由可得成立,反之不成立,所以“”是“”的充分不必要條件考點:充分條件與必要條件2、C【解析】:①若α,則,根據(jù)線面垂直的性質(zhì)可知正確;②若,則;不正確,也可能是m在α內(nèi);錯誤;③若,則;據(jù)線面垂直的判定定理可知正確;④若,根據(jù)線面平行判定的定理可知正確得到①③④正確,故選C3、A【解析】,,,,.故選:A.4、C【解析】分別求兩個樣本的數(shù)字特征,再判斷選項.【詳解】A樣本數(shù)據(jù)是:,樣本數(shù)據(jù)是:,A樣本的眾數(shù)是48,B樣本的眾數(shù)是50,故A錯;A樣本的平均數(shù)是,B樣本的平均數(shù)是,故B錯;A樣本的標準差B樣本的標準差,,故C正確;A樣本的中位數(shù)是,B樣本的中位數(shù)是,故D錯.故選:C5、B【解析】先求出,再對四個選項一一驗證即可.【詳解】因為,又,解得:.故A錯誤;對于B:,故B正確;對于C:,故C錯誤;對于D:,故D錯誤.故選:B6、C【解析】根據(jù)元素與集合的關系列方程求解即可.【詳解】因為,所以或,而無實數(shù)解,所以.故選:C7、B【解析】利用向量垂直的坐標表示可以求解.【詳解】因為,,所以,即;故選:B.【點睛】本題主要考查平面向量垂直的坐標表示,熟記公式是求解的關鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).8、A【解析】根據(jù)解析式判斷函數(shù)單調(diào)性,再結(jié)合零點存在定理,即可判斷零點所處區(qū)間.【詳解】因為是單調(diào)增函數(shù),故是單調(diào)增函數(shù),至多一個零點,又,故的零點所在的區(qū)間為.故選:A.9、D【解析】本題首先可以求出函數(shù)關于軸對稱的函數(shù)的解析式,然后根據(jù)題意得出函數(shù)與函數(shù)的圖像至少有3個交點,最后根據(jù)圖像計算得出結(jié)果【詳解】若,則,因為時,,所以,所以若關于軸對稱,則有,即,設,畫出函數(shù)的圖像,結(jié)合函數(shù)的單調(diào)性和函數(shù)圖像的凹凸性可知對數(shù)函數(shù)與三角函數(shù)在點處相交為臨界情況,即要使與的圖像至少有3個交點,需要且滿足,即,解得,故選D【點睛】本題考查的是函數(shù)的對稱性、對數(shù)函數(shù)以及三角函數(shù)的相關性質(zhì),主要考查如何根據(jù)函數(shù)對稱性來求出函數(shù)解析式,考查學生對對數(shù)函數(shù)以及三角函數(shù)的圖像的理解,考查推理能力,考查數(shù)形結(jié)合思想,是難題10、D【解析】根據(jù)函數(shù)的奇偶性可排除選項A,B;根據(jù)函數(shù)在上的單調(diào)性可排除選項C,進而可得正確選項.【詳解】函數(shù)的定義域為且,關于原點對稱,因為,所以是偶函數(shù),圖象關于軸對稱,故排除選項A,B,當時,,由在上單調(diào)遞增,在上單調(diào)遞減,可得在上單調(diào)遞增,排除選項C,故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】所以,當,即時,取得最小值.所以答案應填:.考點:1、對數(shù)的運算;2、二次函數(shù)的最值.12、【解析】由二倍角公式,商數(shù)關系得,再由誘導公式、商數(shù)關系變形求值式,代入已知可得【詳解】,所以,故答案為:13、【解析】作出函數(shù)的圖象,把函數(shù)的零點轉(zhuǎn)化為直線與函數(shù)圖象交點問題解決.【詳解】由得,即函數(shù)零點是直線與函數(shù)圖象交點橫坐標,當時,是增函數(shù),函數(shù)值從1遞增到2(1不能取),當時,是增函數(shù),函數(shù)值為一切實數(shù),在坐標平面內(nèi)作出函數(shù)的圖象,如圖,觀察圖象知,當時,直線與函數(shù)圖象有2個交點,即函數(shù)有2個零點,所以實數(shù)的取值范圍是:.故答案為:14、55【解析】建立平面直角坐標系,第分鐘時所在位置的高度為,設出其三角函數(shù)的表達式,由題意,得出其周期,求出解析式,然后將代入,可得答案.【詳解】如圖設為地面,圓為摩天輪,其旋轉(zhuǎn)半徑30米,最高點距離地面70米.則摩天輪的最低點離地面10米,即以所在直線為軸,所在直線為軸,建立平面直角坐標系.某人在最低點的位置坐上摩天輪,則第分鐘時所在位置的高度為則由題意,,則,所以當時,故答案為:5515、【解析】直接利用正弦型函數(shù)的性質(zhì)的應用和函數(shù)的單調(diào)遞區(qū)間的應用求出結(jié)果【詳解】解:,,根據(jù)正弦型函數(shù)圖象的特點知,軸左側(cè)有1個或2個最低點①若函數(shù)圖象在軸左側(cè)僅有1個最低點,則,解得,,,此時在軸左側(cè)至少有2個最低點函數(shù)圖象在軸左側(cè)僅有1個最低點不符合題意;②若函數(shù)圖象在軸左側(cè)有2個最低點,則,解得,又,則,故,時,在,恰有3個最低點綜上所述,故答案:16、【解析】由指數(shù)函數(shù)圖象所過定點求出,利用“1”的代換湊配出定值后用基本不等式得出最小值.【詳解】令,,則,∴定點為,,,當且僅當時等號成立,即時取得最小值.故答案為:.【點睛】本題考查指數(shù)函數(shù)的圖象與性質(zhì),考查用基本不等式求最值.“1”的代換是解題關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)的解集為,利用根與系數(shù)的關系求解;(2)根據(jù),得到,再由存在,成立,分,,,利用判別式法求解.【小問1詳解】解:因為的解集為,所以,解得;【小問2詳解】(2)因為,所以,因為存在,成立,即存在,成立,當時,,成立;當時,函數(shù)圖象開口向下,成立;當時,,即,解得或,此時,或,綜上:實數(shù)a的取值范圍或.18、(1)證明見解析;(2).【解析】(1)連接,交于點,連接,證明平面,即可證明出平面平面.(2)用等體積法,即,即可求出答案.【小問1詳解】連接,交于點,連接,如圖所示,底面為矩形,為,的中點,又,,,,又,平面,平面,平面平面【小問2詳解】,,,,在中,,,在中,,在中,,,,,,設點到平面的距離為,由等體積法可知,又平面,為點到平面的距離,,,即點到平面的距離為19、見解析【解析】平面內(nèi)取一點,作于點,于點,可證出平面,從而,同理可證,故平面.【詳解】證明:如圖所示,在平面內(nèi)取一點,作于點,于點.因為平面平面,且交線為,所以平面.因為平面,所以同理可證.又,都在平面內(nèi),且,所以平面【點睛】本題主要考查了兩個平面垂直的性質(zhì),線面垂直的性質(zhì),判定,屬于中檔題.20、(1)(2)時,,時,【解析】(1)根據(jù)圖像先確定,再根據(jù)周期確定,代入特殊點確定,即可得到函數(shù)解析式;(2)將作為一個整體,求出其取值范圍,進而求得函數(shù)最值,以及相應的x的值.【小問1詳解】由圖知,,,即,得,所以,又,所以,,即,由得,所以.【小問2詳解】由得,所以當,即時,,當,即時,.21、(1)最大值為16米

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論