2026屆海南省澄邁縣澄邁中學(xué)數(shù)學(xué)高二第一學(xué)期期末考試模擬試題含解析_第1頁
2026屆海南省澄邁縣澄邁中學(xué)數(shù)學(xué)高二第一學(xué)期期末考試模擬試題含解析_第2頁
2026屆海南省澄邁縣澄邁中學(xué)數(shù)學(xué)高二第一學(xué)期期末考試模擬試題含解析_第3頁
2026屆海南省澄邁縣澄邁中學(xué)數(shù)學(xué)高二第一學(xué)期期末考試模擬試題含解析_第4頁
2026屆海南省澄邁縣澄邁中學(xué)數(shù)學(xué)高二第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆海南省澄邁縣澄邁中學(xué)數(shù)學(xué)高二第一學(xué)期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.過拋物線的焦點(diǎn)的直線交拋物線于不同的兩點(diǎn),則的值為A.2 B.1C. D.43.橢圓上的點(diǎn)P到直線x+2y-9=0的最短距離為()A. B.C. D.4.已知,,,則最小值是()A.10 B.9C.8 D.75.2021年6月17日9時(shí)22分,搭載神舟十二號載人飛船的長征二號F遙十二運(yùn)載火箭,在酒泉衛(wèi)星發(fā)射中心點(diǎn)火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個(gè)月,開展艙外維修維護(hù),設(shè)備更換,科學(xué)應(yīng)用載荷等一系列操作.已知神舟十二號飛船的運(yùn)行軌道是以地心為焦點(diǎn)的橢圓,設(shè)地球半徑為R,其近地點(diǎn)與地面的距離大約是,遠(yuǎn)地點(diǎn)與地面的距離大約是,則該運(yùn)行軌道(橢圓)的離心率大約是()A. B.C. D.6.已知數(shù)列滿足,在任意相鄰兩項(xiàng)與(k=1,2,…)之間插入個(gè)2,使它們和原數(shù)列的項(xiàng)構(gòu)成一個(gè)新的數(shù)列.記為數(shù)列的前n項(xiàng)和,則的值為()A.162 B.163C.164 D.1657.已知方程表示焦點(diǎn)在軸上的橢圓,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣19.設(shè)函數(shù),當(dāng)自變量t由2變到2.5時(shí),函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.1110.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.11.拋物線的準(zhǔn)線方程為()A. B.C. D.12.過點(diǎn)且垂直于直線的直線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點(diǎn)處的切線方程為______14.已知拋物線C:y2=2px(p>0)上的點(diǎn)P(1,y0)(y0>0)到焦點(diǎn)的距離為2,則p=__15.若直線與直線平行,且原點(diǎn)到直線的距離為,則直線的方程為____________.16.設(shè)函數(shù)為奇函數(shù),當(dāng)時(shí),,則_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點(diǎn)О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點(diǎn)B到平面APQ的距離:(2)設(shè)E為棱PC上的點(diǎn),且,若直線DE與平面APQ所成角的正弦值為,試求實(shí)數(shù)的值18.(12分)已知圓C的圓心在直線上,且經(jīng)過點(diǎn)和(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)的直線l與圓C交于A,B兩點(diǎn),且,求直線l的方程19.(12分)已知拋物線的焦點(diǎn)為F,點(diǎn)是拋物線上的點(diǎn),且.(1)求拋物線方程;(2)直線與拋物線交于、兩點(diǎn),且.求△OPQ面積的最小值.20.(12分)已知橢圓C:的離心率為,點(diǎn)為橢圓C上一點(diǎn)(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個(gè)動點(diǎn),且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值21.(12分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(diǎn)(1)求證:CE//平面PAB;(2)若M是線段CE上一動點(diǎn),則線段AD上是否存在點(diǎn),使MN//平面PAB?說明理由22.(10分)已知為數(shù)列的前項(xiàng)和,且.(1)求的通項(xiàng)公式;(2)若,求的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當(dāng)時(shí),,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A2、D【解析】本題首先可以通過直線交拋物線于不同的兩點(diǎn)確定直線的斜率存在,然后設(shè)出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結(jié)果【詳解】因?yàn)橹本€交拋物線于不同的兩點(diǎn),所以直線的斜率存在,設(shè)過拋物線的焦點(diǎn)的直線方程為,由可得,,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點(diǎn)睛】本題考查了拋物線的相關(guān)性質(zhì),主要考查了拋物線的定義、過拋物線焦點(diǎn)的直線與拋物線相交的相關(guān)性質(zhì),考查了計(jì)算能力,是中檔題3、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項(xiàng),再計(jì)算平行線間的距離即可.【詳解】設(shè)與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點(diǎn)P到直線的最短距離為故選:A4、B【解析】利用題設(shè)中的等式,把的表達(dá)式轉(zhuǎn)化成展開后,利用基本不等式求得的最小值【詳解】∵,,,∴=,當(dāng)且僅當(dāng),即時(shí)等號成立故選:B5、A【解析】以運(yùn)行軌道長軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運(yùn)行軌道長軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A6、C【解析】確定數(shù)列的前70項(xiàng)含有的前6項(xiàng)和64個(gè)2,從而求出前70項(xiàng)和.【詳解】,其中之間插入2個(gè)2,之間插入4個(gè)2,之間插入8個(gè)2,之間插入16個(gè)2,之間插入32個(gè)2,之間插入64個(gè)2,由于,,故數(shù)列的前70項(xiàng)含有的前6項(xiàng)和64個(gè)2,故故選:C7、D【解析】根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的不等式組,由此可解得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,則,解得.故選:D.8、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時(shí)取最小值故選:C9、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.10、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A11、A【解析】將拋物線的方程化成標(biāo)準(zhǔn)形式,即可得到答案;【詳解】拋物線的方程化成標(biāo)準(zhǔn)形式,準(zhǔn)線方程為,故選:A.12、A【解析】根據(jù)所求直線垂直于直線,設(shè)其方程為,然后將點(diǎn)代入求解.【詳解】因?yàn)樗笾本€垂直于直線,所以設(shè)其方程為,又因?yàn)橹本€過點(diǎn),所以,解得所以直線方程為:,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出,求出導(dǎo)函數(shù)及,進(jìn)而求出切線方程.【詳解】∵,∴,又,∴在處的切線方程為,即故答案為:14、2【解析】根據(jù)已知條件,結(jié)合拋物線的定義,即可求解【詳解】解:∵拋物線C:y2=2px(p>0)上的點(diǎn)P(1,y0)(y0>0)到焦點(diǎn)的距離為2,∴由拋物線的定義可得,,解得p=2故答案為:215、【解析】可設(shè)直線的方程為,利用點(diǎn)到直線的距離公式求得,即可得解.【詳解】可設(shè)直線的方程為,即,則原點(diǎn)到直線的距離為,解得,所以直線的方程為.故答案為:.16、【解析】由奇函數(shù)的定義可得,代入解析式即可得解.【詳解】函數(shù)為奇函數(shù),當(dāng)時(shí),,所以.故答案為-1.【點(diǎn)睛】本題主要考查了奇函數(shù)的求值問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)以三棱錐等體積法求點(diǎn)到面距離,思路簡單快捷.(2)由直線DE與平面APQ所成角的正弦值為,可以列關(guān)于的方程,解之即可.【小問1詳解】點(diǎn)О是正四棱錐底面中心,點(diǎn)О是BD的中點(diǎn),四邊形PQDO矩形,,兩點(diǎn)到平面APQ的距離相等.正四棱錐中,平面,平面,,,設(shè)點(diǎn)B到平面APQ的距離為d,則,即解之得,即點(diǎn)B到平面APQ的距離為【小問2詳解】取PC中點(diǎn)N,連接BN、ON、DN,則.平面平面正四棱錐中,,直線平面平面,平面平面,平面平面平面中,點(diǎn)E到直線ON的距離即為點(diǎn)E到平面的距離.中,,點(diǎn)P到直線ON的距離為△中,,設(shè)點(diǎn)E到平面的距離為d,則有,則則有,整理得,解之得或18、(1)(2)或【解析】(1)點(diǎn)和的中垂線經(jīng)過圓心,兩直線聯(lián)立方程得圓心坐標(biāo),再利用兩點(diǎn)間距離公式求解半徑.(2)已知弦長,求解直線方程,分類討論斜率是否存在.小問1詳解】點(diǎn)和的中點(diǎn)為,,所以中垂線的,利用點(diǎn)斜式得方程為,聯(lián)立方程得圓心坐標(biāo)為,所以圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)過點(diǎn)的直線l斜率不存在時(shí),直線方程為,此時(shí)弦長,符合題意.當(dāng)過點(diǎn)的直線l斜率存在時(shí),設(shè)直線方程為,化簡得,弦心距,所以,解得,所以直線方程為.綜上所述直線方程為或.19、(1);(2).【解析】(1)根據(jù)拋物線的定義列方程,由此求得,進(jìn)而求得拋物線方程.(2)聯(lián)立直線的方程和拋物線方程,寫出根與系數(shù)關(guān)系,結(jié)合求得的值,求得三角形面積的表達(dá)式,進(jìn)而求得面積的最小值.【詳解】(1)依題意.(2)與聯(lián)立得,,得,又,又m>0,m=4.且,,當(dāng)k=0時(shí),S最小,最小值為.20、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)角平分線的性質(zhì),結(jié)合一元二次方程根與系數(shù)關(guān)系、斜率公式進(jìn)行求解即可.【小問1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過點(diǎn),解得,∴橢圓C的方程為;【小問2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關(guān)于直線對稱.設(shè)直線MP的斜率為k,則直線NP的斜率為∴設(shè)直線MP的方程為,直線NP的方程為設(shè)點(diǎn),由消去y,得∵點(diǎn)在橢圓C上,則有,即同理可得∴,又∴直線MN的斜率為【點(diǎn)睛】關(guān)鍵點(diǎn)睛:由∠MPN的角平分線總垂直于y軸,得到MP與NP所在直線關(guān)于直線對稱是解題的關(guān)鍵.21、(1)證明見解析;(2)存在,理由見解析.【解析】(1)為中點(diǎn),連接,由中位線、線面平行的性質(zhì)可得四邊形為平行四邊形,再根據(jù)線面平行的判定即可證結(jié)論;(2)取中點(diǎn)N,連接,,根據(jù)線面、面面平行的性質(zhì)定理和判斷定理即可判斷存在性【小問1詳解】如下圖,若為中點(diǎn),連接,由E是PD的中點(diǎn),所以且,又BC//平面PAD,面,且面面,所以,且,所以四邊形為平行四邊形,故,而面,面,則面.小問2詳解】取中點(diǎn)N,連接,,∵E,N分別為,的中點(diǎn),∴,∵平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論