湖北省安陸市第一中學2025-2026學年高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
湖北省安陸市第一中學2025-2026學年高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
湖北省安陸市第一中學2025-2026學年高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
湖北省安陸市第一中學2025-2026學年高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
湖北省安陸市第一中學2025-2026學年高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省安陸市第一中學2025-2026學年高一數(shù)學第一學期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果角的終邊在第二象限,則下列結論正確的是A. B.C. D.2.已知直線⊥平面,直線平面,給出下列命題:①∥②⊥∥③∥⊥④⊥∥其中正確命題的序號是A.①③ B.②③④C.①②③ D.②④3.已知函數(shù),則()A.5 B.C. D.4.設則的值為A. B.C.2 D.5.函數(shù)的零點所在區(qū)間為:()A. B.C. D.6.已知,則的大小關系是()A. B.C. D.7.某空間幾何體的正視圖是三角形,則該幾何體不可能是A.圓柱 B.圓錐C.四面體 D.三棱柱8.下列函數(shù)既是定義域上的減函數(shù)又是奇函數(shù)的是A. B.C. D.9.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的函數(shù)是A. B.C. D.10.已知冪函數(shù)的圖象過點,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為銳角,,,則__________12.已知冪函數(shù)在區(qū)間上單調(diào)遞減,則___________.13.已知函數(shù),方程有四個不相等的實數(shù)根(1)實數(shù)m的取值范圍為_____________;(2)的取值范圍為______________14.在空間直角坐標系中,一點到三個坐標軸的距離都是1,則該點到原點的距離是________.15.計算的結果是_____________16.若關于x的不等式對一切實數(shù)x恒成立,則實數(shù)k的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)判斷函數(shù)的奇偶性,并說明理由;(2)若實數(shù)滿足,求的值.18.在平面直角坐標系中,已知角的終邊與以原點為圓心的單位圓交于點.(1)求與的值;(2)計算的值.19.設函數(shù)(1)求函數(shù)的值域;(2)設函數(shù),若對,求正實數(shù)a的取值范圍20.函數(shù)的部分圖象如圖所示.(1)求函數(shù)f(x)的解析式;(2)當x∈[-2,2]時,求f(x)的值域.21.已知集合,.(1)當時,求.(2)若,求實數(shù)m的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題意結合三角函數(shù)的性質(zhì)確定所給結論是否正確即可.【詳解】角的終邊在第二象限,則,AC錯誤;,B正確;當時,,,D錯誤本題選擇B選項.【點睛】本題主要考查三角函數(shù)符號,二倍角公式及其應用等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.2、A【解析】利用線面、面面平行的性質(zhì)和判斷以及線面、面面垂直的性質(zhì)和判斷可得結果.【詳解】②若,則與不一定平行,還可能為相交和異面;④若,則與不一定平行,還可能是相交.故選A.【點睛】本題是一道關于線線、線面、面面關系的題目,解答本題的關鍵是熟練掌握直線與平面和平面與平面的平行、垂直的性質(zhì)定理和判斷定理.3、A【解析】分段函數(shù)求值,根據(jù)自變量的取值范圍代相應的對應關系【詳解】因為所以故選:A4、D【解析】由題意可先求f(2),然后代入f(f(2))=f(﹣1)可得結果.【詳解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故選D【點睛】本題主要考查了分段函數(shù)的函數(shù)值的求解,解題的關鍵是需要判斷不同的x所對應的函數(shù)解析式,屬于基礎試題5、C【解析】利用函數(shù)的單調(diào)性及零點存在定理即得.【詳解】因為,所以函數(shù)單調(diào)遞減,,∴函數(shù)的零點所在區(qū)間為.故選:C.6、B【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),三角函數(shù)的性質(zhì)比較大小即可【詳解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴綜上可知故選:B7、A【解析】因為圓柱的三視圖有兩個矩形,一個圓,正視圖不可能是三角形,而圓錐、四面體(三棱錐)、三棱柱的正視圖都有可能是三角形,所以選A.考點:空間幾何體的三視圖.8、C【解析】根據(jù)函數(shù)的單調(diào)性與奇偶性對選項中的函數(shù)進行判斷即可【詳解】對于A,f(x)=|x|,是定義域R上的偶函數(shù),∴不滿足條件;對于B,f(x),在定義域(﹣∞,0)∪(0,+∞)上是奇函數(shù),且在每一個區(qū)間上是減函數(shù),不能說函數(shù)在定義域上是減函數(shù),∴不滿足條件;對于C,f(x)=﹣x3,在定義域R上是奇函數(shù),且是減函數(shù),∴滿足題意;對于D,f(x)=x|x|,在定義域R上是奇函數(shù),且是增函數(shù),∴不滿足條件故答案為:C【點睛】本題主要考查函數(shù)的單調(diào)性和奇偶性,意在考查學生對這些知識的掌握水平和分析推理能力.9、D【解析】選項A為偶函數(shù),但在區(qū)間(0,+∞)上單調(diào)遞減;選項B,y=x3為奇函數(shù);選項C,y=cosx為偶函數(shù),但在區(qū)間(0,+∞)上沒有單調(diào)性;選項D滿足題意【詳解】選項A,y=ln為偶函數(shù),但在區(qū)間(0,+∞)上單調(diào)遞減,故錯誤;選項B,y=x3為奇函數(shù),故錯誤;選項C,y=cosx為偶函數(shù),但在區(qū)間(0,+∞)上沒有單調(diào)性,故錯誤;選項D,y=2|x|為偶函數(shù),當x>0時,解析式可化為y=2x,顯然滿足在區(qū)間(0,+∞)上單調(diào)遞增,故正確故選D【點睛】本題考查函數(shù)的奇偶性和單調(diào)性,屬于基礎題10、D【解析】先利用待定系數(shù)法求出冪函數(shù)的解析式,再求的值【詳解】解:設,則,得,所以,所以,故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由,都是銳角,得出的范圍,由和的值,利用同角三角函數(shù)的基本關系分別求出和的值,然后把所求式子的角變?yōu)?,利用兩角和與差的余弦函數(shù)公式化簡計算,即得結果【詳解】,都是銳角,,又,,,,則故答案為:.12、【解析】根據(jù)冪函數(shù)定義求出值,再根據(jù)單調(diào)性確定結果【詳解】由題意,解得或,又函數(shù)在區(qū)間上單調(diào)遞減,則,∴故答案為:13、①.②.【解析】利用數(shù)形結合可得實數(shù)m的取值范圍,然后利用對數(shù)函數(shù)的性質(zhì)可得,再利用正弦函數(shù)的對稱性及二次函數(shù)的性質(zhì)即求.【詳解】作出函數(shù)與函數(shù)的圖象,則可知實數(shù)m的取值范圍為,由題可知,,∵,∴,即,又,,∴,又函數(shù)在上單調(diào)遞增,∴,即.故答案為:;.【點睛】關鍵點點睛;本題的關鍵是數(shù)形結合,結合對數(shù)函數(shù)的性質(zhì)及正弦函數(shù)的性質(zhì)可得,再利用二次函數(shù)的性質(zhì)即解.14、【解析】設出點的坐標,根據(jù)題意列出方程組,從而求得該點到原點的距離.【詳解】設該點的坐標因為點到三個坐標軸的距離都是1所以,,,所以故該點到原點的距離為,故填.【點睛】本題主要考查了空間中點的坐標與應用,空間兩點間的距離公式,屬于中檔題.15、.【解析】根據(jù)對數(shù)的運算公式,即可求解.【詳解】根據(jù)對數(shù)的運算公式,可得.故答案為:.16、【解析】根據(jù)一元二次不等式與二次函數(shù)的關系,可知只需判別式,利用所得不等式求得結果.【詳解】不等式對一切實數(shù)x恒成立,,解得:故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)偶函數(shù),理由見詳解;(2)或.【解析】(1)根據(jù)函數(shù)定義域,以及的關系,即可判斷函數(shù)奇偶性;(2)根據(jù)的單調(diào)性以及對數(shù)運算,即可求得參數(shù)的值.【小問1詳解】偶函數(shù),理由如下:因為,其定義域為,關于原點對稱;又,故是偶函數(shù).【小問2詳解】在單調(diào)遞增,在單調(diào)遞減,證明如下:設,故,因為,故,則,又,故,則,故,則故在單調(diào)遞增,又為偶函數(shù),故在單調(diào)遞減;因為,又在單調(diào)遞增,在單調(diào)遞減,故或.18、(1),;(2).【解析】(1)由任意角的三角函數(shù)的定義求出,,,再利用兩角和的余弦公式計算可得;(2)利用誘導公式將式子化簡,再將弦化切,最后代入計算可得;【詳解】解:(1)由三角函數(shù)定義可知:.,;(2)原式因為,原式.19、(1)函數(shù)的值域為.(2)【解析】(1)由已知,利用基本不等式可求函數(shù)的值域;(2)由對可得函數(shù)函數(shù)在上的值域包含與函數(shù)在上的值域,由此可求正實數(shù)a的取值范圍【小問1詳解】,,則,當且僅當時取“=”,所以,即函數(shù)的值域為.【小問2詳解】設,因為所以,函數(shù)在上單調(diào)遞增,則函數(shù)在上單調(diào)遞增,,設時,函數(shù)的值域為A.由題意知.函數(shù)圖象的對稱軸為,當,即時,函數(shù)在上遞增,則,解得,當時,即時,函數(shù)在上的最大值為,中的較大者,而且,不合題意,當,即時,函數(shù)在上遞減,則,滿足條件的不存在,綜上,20、(1);(2).【解析】(1)由最大值求出,由周期求出,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論