版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省2026屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的右焦點為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點,若(為坐標原點),則雙曲線的離心率為().A. B.C. D.2.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在上的導(dǎo)函數(shù)為,在上的導(dǎo)函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.3.在公比為為q等比數(shù)列中,是數(shù)列的前n項和,若,則下列說法正確的是()A. B.數(shù)列是等比數(shù)列C. D.4.在拋物線上,橫坐標為4的點到焦點的距離為5,則p的值為()A. B.2C.1 D.45.已知雙曲線的兩個頂點分別為A、B,點P為雙曲線上除A、B外任意一點,且點P與點A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.36.設(shè)實數(shù)x,y滿足約束條件則的最小值()A.5 B.C. D.87.已知雙曲線C的離心率為,,是C的兩個焦點,P為C上一點,,若△的面積為,則雙曲線C的實軸長為()A.1 B.2C.4 D.68.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-69.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件10.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為A.2 B.3C.4 D.511.在平面上有一系列點,對每個正整數(shù),點位于函數(shù)的圖象上,以點為圓心的與軸都相切,且與彼此外切.若,且,,的前項之和為,則()A. B.C. D.12.某學生2021年共參加10次數(shù)學競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標準差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過點,圓心在x軸正半軸上,半徑為5的圓的方程為________14.已知拋物線方程為,則其焦點坐標為__________15.動點M在圓上移動,則M與定點連線的中點P的軌跡方程為___________.16.命題,恒成立是假命題,則實數(shù)a取值范圍是________________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知四棱錐的底面是矩形,底面,且,設(shè)E、F、G分別為PC、BC、CD的中點,H為EG的中點,如圖.(1)求證:平面;(2)求直線FH與平面所成角的大小.18.(12分)如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD,PD=AD=2,E,F(xiàn)分別為AD和PB的中點.請用空間向量知識解答下列問題:(1)求證:EF//平面PDC;(2)求平面EFC與平面PBD夾角的余弦值.19.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.20.(12分)已知函數(shù)在處有極值,且其圖象經(jīng)過點.(1)求的解析式;(2)求在的最值.21.(12分)已知函數(shù)滿足.(1)求的解析式,并判斷其奇偶性;(2)若對任意,不等式恒成立,求實數(shù)a的取值范圍.22.(10分)已知三棱柱中,面底面,,底面是邊長為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點,使得和面所成角的余弦值為,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由,可知為的三等分點,用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由到漸近線的距離為,所以,又,所以,因為,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.2、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B3、D【解析】根據(jù)等比數(shù)列的通項公式、前項和公式的基本量運算,即可得到答案;【詳解】,,故A錯誤;,,顯然數(shù)列不是等比數(shù)列,故B錯誤;,故C錯誤;,,故D成立;故選:D4、B【解析】由方程可得拋物線的焦點和準線,進而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開口向右,焦點坐標,,準線方程,由拋物線的定義可得拋物線上橫坐標為4的點到準線的距離等于5,即,解之可得.故選:B.5、C【解析】根據(jù)題意設(shè)設(shè),根據(jù)題意得到,進而求得離心率【詳解】根據(jù)題意得到設(shè),因為,所以,所以,則故選:C.6、B【解析】做出,滿足約束條件的可行域,結(jié)合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當直線經(jīng)過點時有最小值,由得,所以的最小值為.故選:B.7、C【解析】由已知條件可得,,,再由余弦定理得,進而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實軸長.【詳解】由題意知,點P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實軸長為,故選:C.8、D【解析】根據(jù)向量共面列方程,化簡求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D9、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B10、D【解析】拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.11、C【解析】根據(jù)兩圓的幾何關(guān)系及其圓心在函數(shù)的圖象上,即可得到遞推關(guān)系式,通過構(gòu)造等差數(shù)列求得的通項公式,得出,最后利用裂項相消,求出數(shù)列前項和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數(shù)列且,,則,,則,即,故答案選:.12、B【解析】根據(jù)平均數(shù)、標準差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢,標準差描述數(shù)據(jù)的波動大小估計數(shù)據(jù)的穩(wěn)定程度.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)圓方程為,代入原點計算得到答案.【詳解】設(shè)圓方程為經(jīng)過點,代入圓方程則圓方程為故答案為【點睛】本題考查了圓方程的計算,設(shè)出圓方程是解題的關(guān)鍵.14、【解析】先將拋物線的方程轉(zhuǎn)化為標準方程的形式,即可判斷拋物線的焦點坐標為,從而解得答案.【詳解】解:因為拋物線方程為,即,所以,,所以拋物線的焦點坐標為,故答案為:.15、##【解析】設(shè),中點,根據(jù)中點坐標公式求出,代入圓的標準方程即可得出結(jié)果.【詳解】設(shè),中點,則,即,因為在圓上,代入得故答案為:.16、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實數(shù)a的取值范圍是,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接CH,延長交PD于點K,連接BK,根據(jù)E、F、G分別為PC、BC、CD的中點,易得,再利用線面平行的判定定理證明.(2)建立空間直角坐標,求得的坐標,平面PBC一個法向量,代入公式求解.【詳解】(1)如圖所示:連接CH,延長交PD于點K,連接BK,因為設(shè)E、F、G分別為PC、BC、CD的中點,所以H為CK的中點,所以,又平面平面,所以平面;(2)建立如圖所示直角坐標系則,所以,設(shè)平面PBC一個法向量為:,則,有,令,,設(shè)直線FH與平面所成角為,所以,因為,所以.【點睛】本題主要考查線面平行的判定定理,線面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理,運算求解的能力,屬于中檔題.18、(1)證明見解析(2)【解析】(1)以為原點,以所在的直線分別為軸,建立空間直角坐標系,然后求出平面的法向量,再求出,判斷是否與法垂直即可,(2)分別求出平面EFC與平面PBD的法向量,利用向量夾角公式求解即可【小問1詳解】因PD⊥底面ABCD,平面,所以,因為四邊形為正方形,所以,所以兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標系,如圖所示,則,因為E,F(xiàn)分別為AD和PB的中點,所以,所以,因為,所以平面,所以平面的一個法向量為,因為,所以,因為平面,所以EF//平面PDC;【小問2詳解】設(shè)平面的法向量為,因為,,所以,令,則,設(shè)平面的法向量為,因為,所以,令,則,設(shè)平面EFC與平面PBD夾角為,,則,所以平面EFC與平面PBD夾角的余弦值為19、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識,考查空間想象能力、分析問題的能力、計算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點M(M∈平面PAB),點M即為所求的一個點.理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點N,使得AP=PN,則所找的點可以是直線MN上任意一點)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過點A作AH⊥CE,交CE的延長線于點H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點,以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點:線線平行、線面平行、向量法.20、(1)(2),【解析】(1)由與解方程組即可得解;(2)求導(dǎo)后得到函數(shù)的單調(diào)區(qū)間與極值后,比較端點值即可得解.【詳解】(1)求導(dǎo)得,處有極值,即,又圖象過點,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘極小值↗1在時,,.【點睛】本題考查了導(dǎo)數(shù)的簡單應(yīng)用,屬于基礎(chǔ)題.21、(1),是奇函數(shù)(2)【解析】(1)由求出,進而求得的解析式,利用奇偶函數(shù)的定義判斷函數(shù)的奇偶性即可;(2)根據(jù)冪函數(shù)的單調(diào)性可得函數(shù)的單調(diào)性,求出函數(shù)的最小值,將不等式恒成立轉(zhuǎn)化為對任意使得恒成立即可.【小問1詳解】因為,所以,所以.所以.的定義城為,且,所以是奇函數(shù).【小問2詳解】因為,在上均為增函數(shù),所以在上增函數(shù),所以.對任意,不等式恒成立,則,所以,即實數(shù)a的取值范固為.22、(1)證明見解析;(2)為的中點,理由見解析.【解析】(1)取的中點,連接,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大通湖區(qū)法院公開招聘聘用制司法警務(wù)輔助人員備考題庫及參考答案詳解1套
- 2025年雙溪鄉(xiāng)人民政府關(guān)于公開選拔重點公益林護林員備考題庫及一套完整答案詳解
- 2025年牟定縣公安局公開招聘警務(wù)輔助人員備考題庫及1套完整答案詳解
- 假釋諒解協(xié)議書
- 英語語言文學旅游英語翻譯文化傳遞優(yōu)化答辯匯報
- 涉農(nóng)企業(yè)資金融通財務(wù)管理-惠農(nóng)政策借力與融資效率提升研究畢業(yè)論文答辯
- 電商扶貧協(xié)議合同
- 醫(yī)療質(zhì)保協(xié)議書
- 亳州中介協(xié)議書
- 南海采油協(xié)議書
- 2025年科研倫理與學術(shù)規(guī)范期末考試及參考答案
- 貨款尾款結(jié)算協(xié)議書
- 村會計筆試試題及答案
- 2026年江西省鐵路航空投資集團校園招聘(24人)筆試考試參考題庫及答案解析
- 北京四中八年級【元旦班會】2026馬年新年ShowTime(模仿秀)
- 2025年徐州市教育局直屬學校招聘真題
- 消防設(shè)施共用責任劃分協(xié)議書范本
- 杜國楹小罐茶的創(chuàng)業(yè)講稿
- 2025-2026學年統(tǒng)編版九年級歷史上冊(全冊)知識點梳理歸納
- 滬教版(新版)一年級下學期數(shù)學第4單元100以內(nèi)的加減法單元試卷(附答案)
- 放射科CT檢查注意事項
評論
0/150
提交評論