版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海市浦東區(qū)洋涇中學2025-2026學年數(shù)學高一第一學期期末經(jīng)典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列區(qū)間中,函數(shù)單調(diào)遞增的區(qū)間是()A. B.C. D.2.()A.1 B.0C.-1 D.3.()A. B.C. D.4.函數(shù)部分圖像如圖所示,則的值為()A. B.C. D.5.命題P:“,”的否定為A., B.,C., D.,6.若log2a<0,,則()A.a>1,b>0 B.a>1,b<0C.0<a<1,b>0 D.0<a<1,b<07.方程的實數(shù)根大約所在的區(qū)間是A. B.C. D.8.已知集合,,則A∩B中元素的個數(shù)為()A.2 B.3C.4 D.59.已知向量,若與垂直,則的值等于A. B.C.6 D.210.工藝扇面是中國書面一種常見的表現(xiàn)形式.某班級想用布料制作一面如圖所示的扇面.已知扇面展開的中心角為,外圓半徑為,內(nèi)圓半徑為.則制作這樣一面扇面需要的布料為().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小值為________.12.已知直線與圓相切,則的值為________13.___________14.已知函數(shù),方程有四個不相等的實數(shù)根(1)實數(shù)m的取值范圍為_____________;(2)的取值范圍為______________15.若,其中,則的值為______16.設函數(shù),若關于x方程有且僅有6個不同的實根.則實數(shù)a的取值范圍是_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若在上的最大值為,求的值;(2)若為的零點,求證:.18.如圖所示,在四棱錐中,底面是矩形,側(cè)棱垂直于底面,分別是的中點.求證:(1)平面平面;(2)平面平面.19.為了考查甲乙兩種小麥的長勢,分別從中抽取10株苗,測得苗高如下:甲12131415101613111511乙111617141319681016哪種小麥長得比較整齊?20.已知函數(shù),.(1)用函數(shù)單調(diào)性的定義證明:是增函數(shù);(2)若,則當為何值時,取得最小值?并求出其最小值.21.已知函數(shù).(Ⅰ)對任意的實數(shù),恒有成立,求實數(shù)的取值范圍;(Ⅱ)在(Ⅰ)的條件下,當實數(shù)取最小值時,討論函數(shù)在時的零點個數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】解不等式,利用賦值法可得出結(jié)論.【詳解】因為函數(shù)的單調(diào)遞增區(qū)間為,對于函數(shù),由,解得,取,可得函數(shù)的一個單調(diào)遞增區(qū)間為,則,,A選項滿足條件,B不滿足條件;取,可得函數(shù)的一個單調(diào)遞增區(qū)間為,且,,CD選項均不滿足條件.故選:A.【點睛】方法點睛:求較為復雜的三角函數(shù)的單調(diào)區(qū)間時,首先化簡成形式,再求的單調(diào)區(qū)間,只需把看作一個整體代入的相應單調(diào)區(qū)間內(nèi)即可,注意要先把化為正數(shù)2、A【解析】用誘導公式化簡計算.【詳解】因為,所以,所以原式.故選:A.【點睛】本題考查誘導公式,考查特殊角的三角函數(shù)值.屬于基礎題.3、D【解析】根據(jù)誘導公式以及特殊角的三角函數(shù)值,即可容易求得結(jié)果.【詳解】因為.故選:D.4、C【解析】根據(jù)的最值得出,根據(jù)周期得出,利用特殊點計算,從而得出的解析式,再計算.【詳解】由函數(shù)的最小值可知:,函數(shù)的周期:,則,當時,,據(jù)此可得:,令可得:,則函數(shù)的解析式為:,.故選:C.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),屬于中檔題.5、B【解析】“全稱命題”的否定是“特稱命題”根據(jù)全稱命題的否定寫出即可【詳解】解:命題P:“,”的否定是:,故選B【點睛】本題考察了“全稱命題”的否定是“特稱命題”,屬于基礎題.6、D【解析】,則;,則,故選D7、C【解析】方程的根轉(zhuǎn)化為函數(shù)的零點,判斷函數(shù)的連續(xù)性以及單調(diào)性,然后利用零點存在性定理推出結(jié)果即可【詳解】方程的根就是的零點,函數(shù)是連續(xù)函數(shù),是增函數(shù),又,,所以,方程根屬于故選C【點睛】本題考查函數(shù)零點存在性定理的應用,考查計算能力8、B【解析】采用列舉法列舉出中元素的即可.【詳解】由題意,,故中元素的個數(shù)為3.故選:B【點晴】本題主要考查集合的交集運算,考查學生對交集定義的理解,是一道容易題.9、B【解析】,所以,則,故選B10、B【解析】由扇形的面積公式,可得制作這樣一面扇面需要的布料.【詳解】解:根據(jù)題意,由扇形的面積公式可得:制作這樣一面扇面需要的布料為.故選:B.【點睛】本題考查扇形的面積公式,考查學生的計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】原函數(shù)化為,令,將函數(shù)轉(zhuǎn)化為,利用二次函數(shù)的性質(zhì)求解.【詳解】由原函數(shù)可化為,因為,令,則,,又因為,所以,當時,即時,有最小值.故答案為:12、2【解析】直線與圓相切,圓心到直線的距離等于半徑,列出方程即可求解的值【詳解】依題意得,直線與圓相切所以,即,解得:,又,故答案為:213、【解析】利用、兩角和的正弦展開式進行化簡可得答案.【詳解】故答案為:.14、①.②.【解析】利用數(shù)形結(jié)合可得實數(shù)m的取值范圍,然后利用對數(shù)函數(shù)的性質(zhì)可得,再利用正弦函數(shù)的對稱性及二次函數(shù)的性質(zhì)即求.【詳解】作出函數(shù)與函數(shù)的圖象,則可知實數(shù)m的取值范圍為,由題可知,,∵,∴,即,又,,∴,又函數(shù)在上單調(diào)遞增,∴,即.故答案為:;.【點睛】關鍵點點睛;本題的關鍵是數(shù)形結(jié)合,結(jié)合對數(shù)函數(shù)的性質(zhì)及正弦函數(shù)的性質(zhì)可得,再利用二次函數(shù)的性質(zhì)即解.15、;【解析】因為,所以點睛:三角函數(shù)求值三種類型(1)給角求值:關鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當變換已知式,求得另外函數(shù)式的值,以備應用;②變換待求式,便于將已知式求得的函數(shù)值代入,從而達到解題的目的.(3)給值求角:實質(zhì)是轉(zhuǎn)化為“給值求值”,先求角的某一函數(shù)值,再求角的范圍,確定角.16、或或【解析】作出函數(shù)的圖象,設,分關于有兩個不同的實數(shù)根、,和兩相等實數(shù)根進行討論,當方程有兩個相等的實數(shù)根時,再檢驗,當方程有兩個不同的實數(shù)根、時,或,再由二次方程實數(shù)根的分布進行討論求解即可.【詳解】作出函數(shù)的簡圖如圖,令,要使關于的方程有且僅有個不同的實根,(1)當方程有兩個相等的實數(shù)根時,由,即,此時當,此時,此時由圖可知方程有4個實數(shù)根,此時不滿足.當,此時,此時由圖可知方程有6個實數(shù)根,此時滿足條件(2)當方程有兩個不同的實數(shù)根、時,則或當時,由可得則的根為由圖可知當時,方程有2個實數(shù)根當時,方程有4個實數(shù)根,此時滿足條件.當時,設由,則,即綜上所述:滿足條件的實數(shù)a的取值范圍是或或故答案為:或或【點睛】關鍵點睛:本題考查利用復合型二次函數(shù)的零點個數(shù)求參數(shù),考查數(shù)形結(jié)合思想的應用,解答本題的關鍵由條件結(jié)合函數(shù)的圖象,分析方程的根情況及其范圍,再由二次方程實數(shù)根的分布解決問題,屬于難題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)2;(2)詳見解析.【解析】(1)易知函數(shù)和在上遞增,從而在上遞增,根據(jù)在上的最大值為求解.(2)根據(jù)為的零點,得到,由零點存在定理知,然后利用指數(shù)和對數(shù)互化,將問題轉(zhuǎn)化為,利用基本不等式證明.【詳解】(1)因為函數(shù)和在上遞增,所以在上遞增,又因為在上的最大值為,所以,解得;(2)因為為的零點,所以,即,又當時,,當時,,所以,因為,等價于,等價于,等價于,而,令,所以,所以成立,所以.【點睛】關鍵點點睛:本題關鍵是由指數(shù)和對數(shù)的互化結(jié)合,將問題轉(zhuǎn)化為證成18、(1)證明見解析;(2)證明見解析.【解析】(1)因為是的中點,所以,由平面又可以得到,故平面得證.(2)因為三角形的中位線,所以,從而可以證明平面,同理平面,故而平面平面.解析:(1)∵底面,平面,∴,又矩形中,分別為中點,∴,,∴,∵,,平面,∴平面,∵平面,平面平面.(2)∵矩形中,分別為中點,∴,∵平面,平面,∴平面,∵是的中點,∴,∵平面,平面,∴平面,∵,,平面,∴平面平面.19、乙種小麥長得比較整齊.【解析】根據(jù)題意,要比較甲、乙兩種小麥的長勢更整齊,需比較它們的方差,先求出其平均數(shù),再根據(jù)方差的計算方法計算方差,進行比較可得結(jié)論試題解析:由題中條件可得:,,,,∵,∴乙種小麥長得比較整齊.點睛:平均數(shù)與方差都是重要的數(shù)字特征,是對總體的一種簡明的描述,它們所反映的情況有著重要的實際意義,平均數(shù)、中位數(shù)、眾數(shù)描述其集中趨勢,方差和標準差描述其波動大小,方差或標準差越小,則數(shù)據(jù)分布波動較小,相對比較穩(wěn)定20、證明詳見解析;(2)時,的最小值是.【解析】(1)根據(jù)函數(shù)單調(diào)性定義法證明,定義域內(nèi)任取,且,在作差,變形后判斷符號,證明函數(shù)的單調(diào)性;(2)首先根據(jù)函數(shù)的定義域求的范圍,再根據(jù)基本不等式求最小值.【詳解】(1)證明:在區(qū)間任取,設,,,,,即,所以函數(shù)在是增函數(shù);(2),的定義域是,,設,時,,當時,,當,即時,等號成立,即時,函數(shù)取得最小值4.【點睛】易錯點睛:本題的易錯點是第二問容易忽略函數(shù)的定義域,換元時,也要注意中間變量的取值范圍.21、(Ⅰ);(Ⅱ)見解析.【解析】(Ⅰ)由可知,區(qū)間是不等式解集的子集,由此可得出實數(shù)的不等式,解出即可;(Ⅱ)由題意可知,,則,令,可得出,令,對實數(shù)的取值范圍進行分類討論,先討論方程的根的個數(shù)及根的范圍,進而得出方程的根個數(shù),由此可得出結(jié)論.【詳解】(Ⅰ),,對任意的實數(shù),恒有成立,則區(qū)間是不等式解集的子集,,解得,因此,實數(shù)的取值范圍是;(Ⅱ),由題意可知,,,令,得,令,則,作出函數(shù)和函數(shù)在時的圖象如下圖所示:作出函數(shù)在時的圖象如下圖所示:①當或時,即當或時,方程無實根,此時,函數(shù)無零點;②當時,即當時,方程根為,而方程在區(qū)間上有兩個實根,此時,函數(shù)有兩個零點;③當時,即當時,方程有兩根、,且,,方程在區(qū)間上有兩個實根,方程在區(qū)間上有兩個實根,此時,函數(shù)有四個零點;④當時,即當時,方程有兩根分別為、,方程在區(qū)間上只有一個實根,方程在區(qū)間上有兩個實根,此時,函數(shù)有三個零點;⑤當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流倉儲操作流程與安全指南
- 小學科學重點知識復習提綱
- 教師個人專業(yè)成長反思心得三篇
- 員工工作反思報告模板與寫作技巧
- SPSS課件一教學課件
- sports課件及資源教學課件
- 多技能工激勵管理制度(3篇)
- 滴灌系統(tǒng)施工安裝操作標準
- 滅火-逃生應急預案(3篇)
- 便利店相關管理制度(3篇)
- 從庫存積壓到爆款頻出:POP趨勢網(wǎng)如何重塑女裝設計師的工作邏輯1216
- 2025吐魯番市高昌區(qū)招聘第二批警務輔助人員(165人)考試歷年真題匯編帶答案解析
- DRG支付改革下臨床科室績效優(yōu)化策略
- 2026中央紀委國家監(jiān)委機關直屬單位招聘24人筆試備考題庫含答案解析(奪冠)
- 平面包裝設計創(chuàng)新創(chuàng)業(yè)
- 加盟2025年房地產(chǎn)經(jīng)紀協(xié)議合同
- 2025至2030中國商業(yè)攝影行業(yè)市場發(fā)展分析及發(fā)展前景預測與投資風險報告
- 地球系統(tǒng)多源數(shù)據(jù)融合-洞察及研究
- 香水銷售知識培訓內(nèi)容課件
- 工業(yè)產(chǎn)品早期可制造性評估標準
- DB45-T 2757.1-2023 交通運輸行業(yè)安全風險評估規(guī)范 第1部分:總則
評論
0/150
提交評論