版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
海南省文昌華僑中學(xué)2026屆數(shù)學(xué)高二上期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題,,則為()A., B.,C., D.,2.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標的差值和橫坐標的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)的導(dǎo)函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.3.已知數(shù)列通項公式,則()A.6 B.13C.21 D.314.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.5.已知點P在拋物線上,點Q在圓上,則的最小值為()A. B.C. D.6.和的等差中項與等比中項分別為()A., B.2,C., D.1,7.已知函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,則“對任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知是偶函數(shù)的導(dǎo)函數(shù),.若時,,則使得不等式成立的的取值范圍是()A. B.C. D.9.小王與小張二人參加某射擊比賽預(yù)賽的五次測試成績?nèi)缦卤硭?,設(shè)小王與小張成績的樣本平均數(shù)分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.10.若數(shù)列滿足,則()A.2 B.6C.12 D.2011.已知分別是橢圓的左,右焦點,點M是橢圓C上的一點,且的面積為1,則橢圓C的短軸長為()A.1 B.2C. D.412.若雙曲線的兩個焦點為,點是上的一點,且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓與圓的公共弦長為______14.若球的大圓的面積為,則該球的表面積為___________.15.已知正方形的邊長為2,對部分以為軸進行翻折,翻折到,使二面角的平面角為直二面角,則___________.16.從正方體的8個頂點中選取4個作為項點,可得到四面體的概率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若數(shù)列的前n項和滿足,(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和18.(12分)已知函數(shù)(1)求的單調(diào)區(qū)間;(2)若,求的最大值與最小值19.(12分)如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,(1)求證:平面ACF;(2)在線段PB上是否存在一點H,使得CH與平面ACF所成角的正弦值為?若存在,求出線段PH的長度;若不存在,請說明理由20.(12分)如圖,在正方體中,,分別為棱,的中點(1)求證:直線平面;(2)求異面直線與所成角的余弦值21.(12分)已知中,分別為角的對邊,且(1)求;(2)若為邊的中點,,求的面積22.(10分)已知直線經(jīng)過拋物線的焦點,且與拋物線相交于兩點.(1)若直線的斜率為1,求;(2)若,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.【詳解】命題,為特稱命題,而特稱命題的否定是全稱命題,所以命題,,則為:,.故選:B2、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學(xué)文化為背景,導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.3、C【解析】令即得解.【詳解】解:令得.故選:C4、A【解析】根據(jù)等差數(shù)列的通項公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A5、C【解析】先計算拋物線上的點P到圓心距離的最小值,再減去半徑即可.【詳解】設(shè),由圓心,得,∴時,,∴故選:C.6、C【解析】根據(jù)等差中項和等比中項的概念分別求值即可.【詳解】和的等差中項為,和的等比中項為.故選:C.7、A【解析】根據(jù)充分條件與必要條件的概念,由導(dǎo)函數(shù)的正負與函數(shù)單調(diào)性之間關(guān)系,即可得出結(jié)果.【詳解】因為函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,若“對任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對任意的恒成立,即由“對任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A8、C【解析】構(gòu)造函數(shù),分析函數(shù)在上的單調(diào)性,將所求不等式變形為,可得出關(guān)于的不等式,即可得解.【詳解】構(gòu)造函數(shù),其中,則,所以,函數(shù)為上的奇函數(shù),當(dāng)時,,且不恒為零,所以,函數(shù)在上為增函數(shù),且該函數(shù)在上也為增函數(shù),故函數(shù)在上為增函數(shù),因為,則,由得,可得,解得故選:C.9、C【解析】根據(jù)圖表數(shù)據(jù)可以看出小王和小張的平均成績和成績波動情況.【詳解】解:從圖表中可以看出小王每次的成績均不低于小張,但是小王成績波動比較大,故設(shè)小王與小張成績的樣本平均數(shù)分別為和,方差分別為和.可知故選:C10、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D11、B【解析】首先分別設(shè),,再根據(jù)橢圓的定義和性質(zhì)列出等式,即可求解橢圓的短軸長.【詳解】設(shè),,所以,即,即,得,短軸長為.故選:B12、B【解析】由條件結(jié)合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結(jié)合可得當(dāng)點不為雙曲線的頂點時,可得,即當(dāng)點為雙曲線的頂點時,可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:14、【解析】設(shè)球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設(shè)球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.15、-2【解析】根據(jù),則,根據(jù)條件求得向量夾角即可求得結(jié)果.【詳解】由題知,,取的中點O,連接,如圖所示,則,又二面角的平面角為直二面角,則,又,則,為等邊三角形,從而,則,故答案為:-216、【解析】計算出正方體的8個頂點中選取4個作為項點的取法和分從上底面取一個點下底面取三個點、從上底面取二個點下底面取二個點、從上底面取三個點下底面取一個點可得到四面體的取法,由古典概型概率計算公式可得答案.【詳解】正方體的8個頂點中選取4個作為項點,共有取法,可得到四面體的情況有從上底面取一個點下底面取三個點有種;從上底面取二個點下底面取二個點有種,其中當(dāng)上底面和下底面取的四個點在同一平面時共有10種情況不符合,此種情況共有種;從上底面取三個點下底面取一個點有種;一個有種,所以可得到四面體的概率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)遞推關(guān)系結(jié)合等比數(shù)列的定義可求解;(2)根據(jù)(1)化簡,利用裂項相消法求出數(shù)列的前n項和.小問1詳解】當(dāng)時,,所以,即,當(dāng)時,,得,則所以數(shù)列是首項為﹣1,公比為3的等比數(shù)列所以【小問2詳解】由(1)得:所以,所以18、(1)單調(diào)遞增區(qū)間是和,單調(diào)遞減是;(2)函數(shù)的最大值是,函數(shù)的最小值是.【解析】(1)利用導(dǎo)數(shù)和函數(shù)單調(diào)性關(guān)系,求函數(shù)的單調(diào)區(qū)間;(2)利用函數(shù)的單調(diào)性,列表求函數(shù)的最值.【小問1詳解】,當(dāng),解得:或,所以函數(shù)的單調(diào)遞增區(qū)間是和,當(dāng),解得:,所以函數(shù)的單調(diào)遞減區(qū)間是,所以函數(shù)的單調(diào)遞增區(qū)間是和,單調(diào)遞減是;【小問2詳解】由(1)可得下表4單調(diào)遞增單調(diào)遞減單調(diào)遞增所以函數(shù)的最大值是,函數(shù)的最小值是19、(1)證明見解析(2)存在,的長為或,理由見解析.【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)設(shè),求出,根據(jù)與平面所成角的正弦值列方程,由此求得,進而求得的長.小問1詳解】依題意,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,,以為空間坐標原點建立如圖所示空間直角坐標系,,,設(shè)平面法向量為,則,故可設(shè),由于,所以平面.【小問2詳解】存在,理由如下:設(shè),,,,依題意與平面所成角的正弦值為,即,,解得或.,即的長為或,使與平面所成角的正弦值為.20、(1)證明見解析;(2).【解析】(1)證明,則,可證明,由平面,可得,再由線面垂直的判定定理即可求證;(2)連結(jié),可知,所以或其補角即為異面直線與所成的角,在中由余弦定理計算的值即可求解.【小問1詳解】在正方形中,,分別為棱,的中點,則,,,所以,則,所以,即,又因為平面,面,所以,因為,所以平面【小問2詳解】連結(jié),,可知,所以或其補角即為異面直線與所成的角,令,則,,,在中,由余弦定理可得:,故異面直線與所成角的余弦值為.21、(1);(2)【解析】(1)利用正弦定理化邊為角可得,化簡可得,結(jié)合,即得解;(2)在中,由余弦定理得,可得,利用面積公式即得解【詳解】(1)中由正弦定理及條件,可得,∵,,∴,∵,∴,或,又∵,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 京東集團電商運營經(jīng)理面試題含答案
- 2026年法律法規(guī)考試題庫含答案【培優(yōu)a卷】
- 2026年初級管理會計之專業(yè)知識考試題庫300道附完整答案【易錯題】
- 2026年二級注冊建筑師之法律法規(guī)經(jīng)濟與施工考試題庫500道附參考答案【綜合題】
- 2026年初級管理會計之專業(yè)知識考試題庫300道及參考答案【b卷】
- 教學(xué)《分數(shù)除以分數(shù)》數(shù)學(xué)課件教案
- 伊春市事業(yè)編面試題及答案
- 2025年人工智能在金融風(fēng)控的應(yīng)用報告
- 中醫(yī)院招人面試題及答案
- 太古可樂市場營銷經(jīng)理面試題庫含答案
- 保險核心系統(tǒng)(承保、理賠)中斷應(yīng)急預(yù)案
- 2025年石嘴山市政務(wù)服務(wù)中心(綜合窗口)人員招聘筆試備考試題及答案解析
- 書記員的考試試題及答案
- 退股協(xié)議解除合同書范本
- 臺球桿買賣交易合同范本
- (2025年標準)演出免責(zé)協(xié)議書
- 2025年江西省公安機關(guān)人民警察特殊職位招錄考試(網(wǎng)絡(luò)安全)歷年參考題庫含答案詳解(5卷)
- 企業(yè)安全教育培訓(xùn)模板
- DB11-T 2423-2025 城市道路挖掘與修復(fù)技術(shù)規(guī)范
- 骨折病人心理護理
- 1-會計信息系統(tǒng)(閉卷)國開機考答案
評論
0/150
提交評論