陜西韓城2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
陜西韓城2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
陜西韓城2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
陜西韓城2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
陜西韓城2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西韓城2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓和橢圓.直線與圓交于、兩點,與橢圓交于、兩點.若時,的取值范圍是,則橢圓的離心率為()A. B.C. D.2.已知向量,若,則()A. B.5C.4 D.3.設(shè)等差數(shù)列的公差為d,且,則()A.12 B.4C.6 D.84.過拋物線的焦點的直線交拋物線于兩點,點是原點,若;則的面積為()A. B.C. D.5.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象大致形狀為()A. B.C. D.6.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)7.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.8.已知拋物線上一點M與焦點間的距離是3,則點M的縱坐標(biāo)為()A.1 B.2C.3 D.49.已知圓的圓心到直線的距離為,則圓與圓的位置關(guān)系是()A.相交 B.內(nèi)切C.外切 D.外離10.已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.11.已知是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.早在古希臘時期,亞歷山大的科學(xué)家赫倫就發(fā)現(xiàn):光從一點直接傳播到另一點選擇最短路徑,即這兩點間的線段.若光從一點不是直接傳播到另一點,而是經(jīng)由一面鏡子(即便鏡面是曲面)反射到另一點,仍然選擇最短路徑.已知曲線,且將假設(shè)為能起完全反射作用的曲面鏡,若光從點射出,經(jīng)由上一點反射到點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點,則線段的垂直平分線的一般式方程為__________.14.若函數(shù)在[1,3]單調(diào)遞增,則a的取值范圍___15.已知數(shù)列滿足0,,則數(shù)列的通項公式為____,則數(shù)列的前項和______16.函數(shù)在區(qū)間上的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線E:過點Q(1,2),F(xiàn)為其焦點,過F且不垂直于x軸的直線l交拋物線E于A,B兩點,動點P滿足△PAB的垂心為原點O.(1)求拋物線E的方程;(2)求證:動點P在定直線m上,并求的最小值.18.(12分)如圖,在四棱錐中中,平面ABCD,底面ABCD是邊長為2的正方形,.(1)求證:平面;(2)求二面角的平面角的余弦值.19.(12分)已知圓:與x軸負(fù)半軸交于點A,過A的直線交拋物線于B,C兩點,且.(1)證明:點C的橫坐標(biāo)為定值;(2)若點C在圓內(nèi),且過點C與垂直的直線與圓交于D,E兩點,求四邊形ADBE的面積的最大值.20.(12分)冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.應(yīng)國務(wù)院要求,黑龍江某醫(yī)院選派醫(yī)生參加援鄂醫(yī)療,該院呼吸內(nèi)科有3名男醫(yī)生,2名女醫(yī)生,其中李亮(男)為科室主任;該院病毒感染科有2名男醫(yī)生,2名女醫(yī)生,其中張雅(女)為科室主任,現(xiàn)在院方?jīng)Q定從兩科室中共選4人參加援鄂醫(yī)療(最后結(jié)果用數(shù)字表達(dá))(1)若至多有1名主任參加,有多少種派法?(2)若呼吸內(nèi)科至少2名醫(yī)生參加,有多少種派法?(3)若至少有1名主任參加,且有女醫(yī)生參加,有多少種派法?21.(12分)如圖,在正三棱柱中,,,,分別為,,的中點(1)證明:(2)求平面與平面所成銳二面角的余弦值22.(10分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題設(shè),根據(jù)圓與橢圓的對稱性,假設(shè)在第一象限可得,結(jié)合已知有,進(jìn)而求橢圓的離心率.【詳解】由題設(shè),圓與橢圓的如下圖示:又時,的取值范圍是,結(jié)合圓與橢圓的對稱性,不妨假設(shè)在第一象限,∴從0逐漸增大至無窮大時,,故,∴故選:C.2、B【解析】根據(jù)向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B3、B【解析】利用等差數(shù)列的通項公式的基本量計算求出公差.【詳解】,所以.故選:B4、C【解析】拋物線焦點為,準(zhǔn)線方程為,由得或所以,故答案為C考點:1、拋物線的定義;2、直線與拋物線的位置關(guān)系5、A【解析】利用f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,結(jié)合導(dǎo)數(shù)的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數(shù)f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,由導(dǎo)數(shù)的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項A.故選:A.6、C【解析】根據(jù)確定平面的條件可對每一個選項進(jìn)行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C7、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B8、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點為,準(zhǔn)線方程為,因為拋物線上一點M與焦點間的距離是3,所以,得,即點M的縱坐標(biāo)為2,故選:B9、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關(guān)系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因為,所以,圓的圓心的坐標(biāo)為,半徑,將圓化為標(biāo)準(zhǔn)方程為,其圓心的坐標(biāo)為,半徑,圓心距,兩圓內(nèi)切,故選:B10、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時等號成立,故的最小值為.故選:C11、D【解析】根據(jù)復(fù)數(shù)的幾何意義即可確定復(fù)數(shù)所在象限【詳解】復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第四象限故選:D12、B【解析】記橢圓的右焦點為,根據(jù)橢圓定義,得到,由題中條件,確定本題的本質(zhì)即是求的最小值,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.【詳解】記橢圓的右焦點為,根據(jù)橢圓的定義可得,,所以,因為,當(dāng)且僅當(dāng)三點共線時,,即;由題意可得,求的值,即是求最短路徑,即求的最小值,所以的最小值為,因此.故選:B.【點睛】思路點睛:求解橢圓上動點到一焦點和一定點距離和的最小值或差的最大值時,一般需要利用橢圓的定義,將問題轉(zhuǎn)化為動點與另一焦點以及該定點距離和的最值問題來求解即可.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由中點坐標(biāo)公式和斜率公式可得的中點和直線斜率,由垂直關(guān)系可得垂直平分線的斜率,由點斜式可得直線方程,化為一般式即可【詳解】由中點坐標(biāo)公式可得,的中點為,可得直線的斜率為,由垂直關(guān)系可得其垂直平分線的斜率為,故可得所求直線的方程為:,化為一般式可得故答案為:14、【解析】由在區(qū)間上恒成立來求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:15、①.②.【解析】第一空:先構(gòu)造等比數(shù)列求出,即可求出的通項公式;第二空:先求出,令,通過錯位相減求出的前項和為,再結(jié)合等差數(shù)列的求和公式及分組求和即可求解.【詳解】第一空:由可得,又,則是以1為首項,2為公比的等比數(shù)列,則,則;第二空:,設(shè),前項和為,則,,兩式相減得,則,又,則.故答案為:;.16、【解析】先對函數(shù)求導(dǎo)判斷其單調(diào)性,然后利用單調(diào)性求函數(shù)的最小值【詳解】解:由,得,當(dāng)且僅當(dāng)時取等號,即取等號,因為,所以函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,函數(shù)取得最小值0,故答案為:0三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,的最小值為.【解析】(1)將點的坐標(biāo)代入拋物線方程,由此求得的值,進(jìn)而求得拋物線的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程與拋物線的方程,寫出韋達(dá)定理,設(shè)出直線的方程,聯(lián)立直線的方程求得的坐標(biāo),由此判斷出動點在定直線上.求得的表達(dá)式,利用基本不等式求得其最小值.【詳解】(1)將點坐標(biāo)代入拋物線方程得,所以.(2)由(1)知拋物線的方程為,所以,設(shè)直線的方程為,設(shè),由消去得,所以.由于為三角形的垂心,所以,所以直線的方程為,即.同理可求得直線的方程為.由,結(jié)合,解得,所以在定直線上.直線的方程為,到直線的距離為,到直線的距離為.所以,當(dāng)且僅當(dāng)時取等號.所以的最小值為.【點睛】本小題主要考查拋物線方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中三角形面積的有關(guān)計算,屬于中檔題.18、(1)證明見解析(2)【解析】(1)根據(jù)平面得到,結(jié)合得到證明。(2)建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面的法向量,根據(jù)向量的夾角公式得到答案?!拘?詳解】由于平面,平面,所以,由于,又,所以平面【小問2詳解】兩兩垂直,建立如圖所示空間直角坐標(biāo)系,,,,,,設(shè)平面的一個法向量為設(shè)平面的一個法向量為,由,得,故可取所以所以二面角的平面角的余弦值19、(1)證明見解析(2)【解析】(1)設(shè)直線方程,與拋物線方程聯(lián)立,設(shè),,結(jié)合,得到,結(jié)合根與系數(shù)的關(guān)系,即可解得答案;(2)根據(jù)(1)所設(shè),表示出弦長,再求出,進(jìn)而表示出四邊形ADBE的面積,據(jù)此求其最大值,【小問1詳解】由題意知點的坐標(biāo)為,易知直線的斜率存在且不為零,設(shè)直線:,,,聯(lián)立,得,則,即,由韋達(dá)定理得,由,即,得,即,代入,得或,又拋物線開口向右,,所以點的橫坐標(biāo)為定值.【小問2詳解】由(1)知點的坐標(biāo)為,故,由(1)知點的坐標(biāo)為,由點在圓內(nèi),得,解得,又,得的斜率,故的方程為,即,故圓心到直線的距離為,由垂徑定理得,故,(),當(dāng)且僅當(dāng)時,有最大值,所以四邊形的面積的最大值為.20、(1)105種(2)105種(3)87種【解析】(1)至多有1名主任參加,包括兩種情況:一種是無主任參加,另一種是只有1名主任參加,利用分類計數(shù)原理可得結(jié)果;(2)呼吸內(nèi)科至少2名醫(yī)生參加,分三種情況:第一種是呼吸內(nèi)科2名醫(yī)生參加,第二種呼吸內(nèi)科3名醫(yī)生參加,第三種呼吸內(nèi)科4名醫(yī)生參加,然后利用分類計數(shù)原理可得結(jié)果;(3)由于張雅既是主任,也是女醫(yī)生.屬于特殊元素,優(yōu)先考慮,分有張雅和無張雅兩種情況求解即可.【詳解】(1)直接法:若無主任,若只有1名主任,共105種,間接法:(2)直接法:,間接法:(3)張雅既是主任,也是女醫(yī)生.屬于特殊元素,優(yōu)先考慮,所以以是否有張雅來分類第一類:若有張雅,第二類:若無張雅,則李亮必定去,共87種【點睛】此題考查了分步和分類計數(shù)原理,正確分步和分類是解決此題的關(guān)鍵,屬于中檔題.21、(1)證明見解析(2)【解析】(1)由已知,以為坐標(biāo)原點,建立空間直角坐標(biāo)系,分別表示出B、D、E、F點的坐標(biāo),然后通過計算向量數(shù)量積來進(jìn)行證明;(2)由第(1)建立的空間直角坐標(biāo)系,分別表示出對應(yīng)點的坐標(biāo),然后計算平面與平面的法向量,然后通過法向量去計算兩平面所成的銳二面角即可.【小問1詳解】如圖,以為坐標(biāo)原點,以,的方向分別為,軸的正方向建立如圖所示的空間直角坐標(biāo)系,由,,,分別為,,的中點,則,,證明:因為,,所以,所以【小問2詳解】設(shè)平面的法向量為,因為,,所以,令,得設(shè)平面的法向量為,則令,得因為所以平面與平面所成銳二面角的余弦值為22、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標(biāo),結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設(shè)直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設(shè)所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論