優(yōu)勝教育2026屆高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
優(yōu)勝教育2026屆高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
優(yōu)勝教育2026屆高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
優(yōu)勝教育2026屆高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
優(yōu)勝教育2026屆高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

優(yōu)勝教育2026屆高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列滿足且,則的值是()A.1 B.4C.-3 D.62.已知數(shù)列通項公式,則()A.6 B.13C.21 D.313.已知橢圓,則下列結論正確的是()A.長軸長為2 B.焦距為C.短軸長為 D.離心率為4.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個能被5整除.”假設內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個不能被5整除5.若定義在R上的函數(shù)的圖象如圖所示,為函數(shù)的導函數(shù),則不等式的解集為()A. B.C. D.6.在中,已知,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形7.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<18.古希臘數(shù)學家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)且的點的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點,為橢圓短軸的端點,,分別為橢圓的左右焦點,動點滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.9.已知條件,條件表示焦點在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件10.已知圓的圓心到直線的距離為,則圓與圓的位置關系是()A.相交 B.內(nèi)切C.外切 D.外離11.已知空間中三點,,,則下列結論中正確的有()A.平面ABC的一個法向量是 B.的一個單位向量的坐標是C. D.與是共線向量12.下列對動直線的四種表述不正確的是()A.與曲線C:可能相離,相切,相交B.恒過定點C.時,直線斜率是0D.時,直線的傾斜角是135°二、填空題:本題共4小題,每小題5分,共20分。13.在正三棱柱中,,點P滿足,其中,,則下列說法中,正確的有_________(請?zhí)钊胨姓_說法的序號)①當時,的周長為定值②當時,三棱錐的體積為定值③當時,有且僅有一個點P,使得④當時,有且僅有一個點P,使得平面14.已知數(shù)列滿足(),設數(shù)列滿足:,數(shù)列的前項和為,若()恒成立,則的取值范圍是________15.已知復數(shù)對應的點在復平面第一象限內(nèi),甲、乙、丙三人對復數(shù)的陳述如下為虛數(shù)單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復數(shù)______16.已知等比數(shù)列的前n項和為,且滿足,則_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:過兩點(1)求C的方程;(2)定點M坐標為,過C右焦點的直線與C交于P,Q兩點,判斷是否為定值?若是,求出該定值,若不是,請說明理由18.(12分)設分別為橢圓的左右焦點,過的直線l與橢圓C相交于A,B兩點,直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程19.(12分)已知直線經(jīng)過兩條直線和的交點,且與直線垂直(1)求直線的一般式方程;(2)若圓的圓心為點,直線被該圓所截得的弦長為,求圓的標準方程20.(12分)為了解某校今年高一年級女生的身體素質(zhì)狀況,從該校高一年級女生中抽取了一部分學生進行“擲鉛球”的項目測試,成績低于5米為不合格,成績在5至7米(含5米不含7米)的為及格,成績在7米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在9米到11米之間(1)求實數(shù)的值及參加“擲鉛球”項目測試的人數(shù);(2)若從此次測試成績最好和最差的兩組中隨機抽取2名學生再進行其它項目的測試,求所抽取的2名學生自不同組的概率21.(12分)已知圓的圓心在直線上,且過點(1)求圓的方程;(2)已知直線經(jīng)過原點,并且被圓截得的弦長為2,求直線l的方程.22.(10分)已知橢圓:經(jīng)過點,設右焦點F,橢圓上存在點Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過點的直線與橢圓交于D,G兩點.是否存在直線使得以DG為直徑的圓過點E(-1,0)?若存在,求出直線的方程,若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意,由于,可知數(shù)列是公差為-3的等差數(shù)列,則可知d=-3,由于=,故選A2、C【解析】令即得解.【詳解】解:令得.故選:C3、D【解析】根據(jù)已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長軸長為,焦距為,短軸長為,ABC選項錯誤.離心率為,D選項正確.故選:D4、B【解析】由于反證法是命題的否定的一個運用,故用反證法證明命題時,可以設其否定成立進行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”的否定是“a,b都不能被5整除”考點:反證法5、A【解析】由函數(shù)單調(diào)性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負,,可化為:或,解得或故選:A6、B【解析】利用誘導公式、兩角和的正弦公式化簡已知條件,由此判斷出三角形的形狀.【詳解】由,得,得,由于,所以,所以.故選:B7、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點】橢圓的簡單幾何性質(zhì),雙曲線的簡單幾何性質(zhì)【易錯點睛】計算橢圓的焦點時,要注意;計算雙曲線的焦點時,要注意.否則很容易出現(xiàn)錯誤8、A【解析】由題可得動點M的軌跡方程,可得,,即求.【詳解】設,,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A9、A【解析】根據(jù)條件,求得a的范圍,根據(jù)充分、必要條件的定義,即可得答案.【詳解】因為條件表示焦點在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A10、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因為,所以,圓的圓心的坐標為,半徑,將圓化為標準方程為,其圓心的坐標為,半徑,圓心距,兩圓內(nèi)切,故選:B11、A【解析】根據(jù)已知條件,結合空間中平面法向量的定義,向量模長的求解,以及共線定理,對每個選項進行逐一分析,即可判斷和選擇.【詳解】因為,,,故可得,因為,故,不平行,則D錯誤;對A:不妨記向量為,則,又,不平行,故向量是平面的法向量,則A正確;對B:因為向量的模長為,其不是單位向量,故B錯誤;對C:因為,故可得,故C錯誤;故選:A.12、A【解析】根據(jù)過定點的直線系求出恒過點可判斷B,由點與圓的位置關系可判斷A,由直線方程可判斷CD.【詳解】直線可化為,令,,解得,,所以直線恒過定點,而該定點在圓C:內(nèi)部,所以必與該圓相交當時,直線方程為,故斜率為0,當時,直線方程為,故斜率為,傾斜角為135°.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、②④【解析】①結合得到P在線段上,結合圖形可知不同位置下周長不同;②由線面平行得到點到平面距離不變,故體積為定值;③結合圖形得到不同位置下有,判斷出③錯誤;④結合圖形得到有唯一的點P,使得線面垂直.【詳解】由題意得:,,,所以P為正方形內(nèi)一點,①,當時,,即,,所以P在線段上,所以周長為,如圖1所示,當點P在處時,,故①錯誤;②,如圖2,當時,即,即,,所以P在上,,因為∥BC,平面,平面,所以點P到平面距離不變,即h不變,故②正確;③,當時,即,如圖3,M為中點,N為BC的中點,P是MN上一動點,易知當時,點P與點N重合時,由于△ABC為等邊三角形,N為BC中點,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因為平面,則,當時,點P與點M重合時,可證明出⊥平面,而平面,則,即,故③錯誤;④,當時,即,如圖4所示,D為的中點,E為的中點,則P為DE上一動點,易知,若平面,只需即可,取的中點F,連接,又因為平面,所以,若,只需平面,即即可,如圖5,易知當且僅當點P與點E重合時,故只有一個點P符合要求,使得平面,故④正確.故選:②④【點睛】立體幾何的壓軸題,通常情況下要畫出圖形,利用線面平行,線面垂直及特殊點,特殊值進行排除選項,或者用等體積法進行轉化等思路進行解決.14、【解析】先由條件求出的通項公式,得到,由裂項相消法再求出,根據(jù)不等式恒成立求出參數(shù)的范圍即可.【詳解】當時,有當時,由①有②由①-②得:所以,當時也成立.所以,故則由,即,所以所以,由所以故答案為:【點睛】本題考查求數(shù)列的通項公式,考查裂項相消法求和以及數(shù)列不等式問題,屬于中檔題.15、##【解析】設,則,然后分別求出甲,乙,丙對應的結論,先假設甲正確,則得出乙錯誤,丙正確,由此即可求解【詳解】解:設,則,甲:由可得,則,乙:由可得:,丙:由可得,即,所以,若,則,則不成立,,則,解得或,所以甲,丙正確,乙錯誤,此時或,又復數(shù)對應的點在復平面第一象限內(nèi),所以,故答案為:16、##31.5【解析】根據(jù)等比數(shù)列通項公式,求出,代入求和公式,即可得答案.【詳解】因為數(shù)列為等比數(shù)列,所以,又,所以,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)為定值.【解析】(1)根據(jù)題意,列出的方程組,求解即可;(2)對直線的斜率是否存在進行討論,當直線斜率存在時,設出直線的方程,聯(lián)立橢圓方程,利用韋達定理,轉化,求解即可.【小問1詳解】因為橢圓過兩點,故可得,解得,故橢圓方程為:.【小問2詳解】由(1)可得:,故橢圓的右焦點的坐標為;當直線的斜率不存在時,此時直線的方程為:,代入橢圓方程,可得,不妨取,又,故.當直線的斜率存在時,設直線的方程為:,聯(lián)立橢圓方程,可得:,設坐標為,故可得,則.綜上所述,為定值.【點睛】本題考察橢圓方程的求解,以及橢圓中的定值問題;處理問題的關鍵是合理的利用韋達定理,將目標式進行轉化,屬中檔題.18、(1)(2)【解析】(1)求得直線的方程,利用點到直線的距離列方程,由此求得,進而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡寫出根與系數(shù)關系,結合來求得,從而求得橢圓的方程.【小問1詳解】依題意,直線的方程為,到的距離為,所以焦距.【小問2詳解】由,消去并化簡得,設,則,,,,,所以,,,,,,,,,所以,所以橢圓的方程為.19、(1)(2)【解析】(1)由題意求出兩直線的交點,再求出所求直線的斜率,用點斜式寫出直線的方程;(2)根據(jù)題意求出圓的半徑,由圓心寫出圓的標準方程【小問1詳解】解:由題意知,解得,直線和的交點為;設直線的斜率為,與直線垂直,;直線的方程為,化為一般形式為;【小問2詳解】解:設圓的半徑為,則圓心為到直線的距離為,由垂徑定理得,解得,圓的標準方程為20、(1)0.05,40;(2)【解析】(1)因為由頻率分布直方圖可得共五組的頻率和為1所以可得一個關于的等式,即可求出的值.再根據(jù)已知有4名學生的成績在9米到11米之間,可以求出本次參加“擲鉛球”項目測試的人數(shù).本小題要根據(jù)所給的圖表及直方圖作答,頻率的計算易漏乘以組距.(2)因為若此次測試成績最好的共有4名同學.成績最差的共有2名同學.所以從6名同學中抽取2名同學共有15中情況,其中兩人在同組情況由8中.所以可以計算出所求的概率.試題解析:(Ⅰ)由題意可知解得所以此次測試總人數(shù)為答:此次參加“擲鉛球”的項目測試的人數(shù)為40人(Ⅱ)設從此次測試成績最好和最差的兩組中隨機抽取2名學生自不同組的事件為A:由已知,測試成績在有2人,記為;在有4人,記為.從這6人中隨機抽取2人有,共15種情況事件A包括共8種情況.所以答:隨機抽取的2名學生自不同組的概率為考點:1.頻率分布直方圖.2.概率問題.3.列舉分類的思想.21、(1);(2)或.【解析】(1)根據(jù)題意設圓心坐標為,進而得,解得,故圓的方程為(2)分直線的斜率存在和不存在兩種情況討論求解即可.【詳解】(1)圓的圓心在直線上,設所求圓心坐標為∵過點,解得∴所求圓的方程為(2)直線經(jīng)過原點,并且被圓截得的弦長為2①當直線的斜率不存在時,直線的方程為,此時直線被圓截得的弦長為2,滿足條件;②當直線的斜率存在時,設直線的方程為,由于直線被圓截得的弦長為,故圓心到直線的距離為故由點到直線的距離公式得:解得,所以直線l的方程為綜上所述,則直線l的方程為或【點睛】易錯點點睛:本題第二問在解題的過程中要注意直線斜率不存在情況的討論,即分直線的斜率存在和不存在兩種,避免在解題的過程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論