上海市松江區(qū) 2025年高二上數(shù)學(xué)期末達(dá)標(biāo)測試試題含解析_第1頁
上海市松江區(qū) 2025年高二上數(shù)學(xué)期末達(dá)標(biāo)測試試題含解析_第2頁
上海市松江區(qū) 2025年高二上數(shù)學(xué)期末達(dá)標(biāo)測試試題含解析_第3頁
上海市松江區(qū) 2025年高二上數(shù)學(xué)期末達(dá)標(biāo)測試試題含解析_第4頁
上海市松江區(qū) 2025年高二上數(shù)學(xué)期末達(dá)標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市松江區(qū)2025年高二上數(shù)學(xué)期末達(dá)標(biāo)測試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個(gè)平面向量滿足,則不共線”的否命題是真命題.2.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時(shí),有恒成立.則不等式的解集為()A. B.C. D.3.在等比數(shù)列中,若,則公比()A. B.C.2 D.34.已知P是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn)且,則的面積是()A. B.2C. D.15.已知,是雙曲線的左、右焦點(diǎn),點(diǎn)A是的左頂點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓交的一條漸近線于、兩點(diǎn),以為直徑的圓與軸交于兩點(diǎn),且平分,則雙曲線的離心率為()A. B.2C. D.36.已知,則a,b,c的大小關(guān)系為()A. B.C. D.7.現(xiàn)要完成下列兩項(xiàng)調(diào)查:①從某社區(qū)70戶高收入家庭、335戶中等收入家庭、95戶低收入家庭中選出100戶,調(diào)查社會(huì)購買能力的某項(xiàng)指標(biāo);②從某中學(xué)的15名藝術(shù)特長生中選出3名調(diào)查學(xué)習(xí)負(fù)擔(dān)情況.這兩項(xiàng)調(diào)查宜采用的抽樣方法是()A①簡單隨機(jī)抽樣,②分層抽樣 B.①分層抽樣,②簡單隨機(jī)抽樣C.①②都用簡單隨機(jī)抽樣 D.①②都用分層抽樣8.等差數(shù)列的首項(xiàng)為正數(shù),其前n項(xiàng)和為.現(xiàn)有下列命題,其中是假命題的有()A.若有最大值,則數(shù)列的公差小于0B.若,則使的最大的n為18C.若,,則中最大D.若,,則數(shù)列中的最小項(xiàng)是第9項(xiàng)9.已知直線與直線垂直,則()A. B.C. D.310.設(shè)為雙曲線與橢圓的公共的左右焦點(diǎn),它們在第一象限內(nèi)交于點(diǎn)是以線段為底邊的等腰三角形,若橢圓的離心率范圍為,則雙曲線的離心率取值范圍是()A. B.C. D.11.設(shè),則當(dāng)數(shù)列{an}的前n項(xiàng)和取得最小值時(shí),n的值為()A.4 B.5C.4或5 D.5或612.設(shè)正實(shí)數(shù),滿足(其中為正常數(shù)),若的最大值為3,則()A.3 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在[1,3]單調(diào)遞增,則a的取值范圍___14.對某市“四城同創(chuàng)”活動(dòng)中100名志愿者的年齡抽樣調(diào)查統(tǒng)計(jì)后得到頻率分布直方圖(如圖),但是年齡組為的數(shù)據(jù)不慎丟失,則依據(jù)此圖可估計(jì)該市“四城同創(chuàng)”活動(dòng)中志愿者年齡在的人數(shù)為________15.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;16.已知離心率為的橢圓:和離心率為的雙曲線:有公共的焦點(diǎn),其中為左焦點(diǎn),P是與在第一象限的公共點(diǎn).線段的垂直平分線經(jīng)過坐標(biāo)原點(diǎn),則的最小值為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,,,,平面,點(diǎn)F在線段上運(yùn)動(dòng).(1)若平面,請確定點(diǎn)F的位置并說明理由;(2)若點(diǎn)F滿足,求平面與平面的夾角的余弦值.18.(12分)已知數(shù)列中,,().(1)求證:是等比數(shù)列,并求的通項(xiàng)公式;(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和為.19.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點(diǎn),且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積20.(12分)已知是公差不為0的等差數(shù)列,,且成等比數(shù)列(1)求數(shù)列通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和21.(12分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側(cè)面積;(2)求平面SCD與平面SAB的夾角的余弦值.22.(10分)已知函數(shù).(1)求曲線在點(diǎn)處的切線的方程.(2)若直線為曲線切線,且經(jīng)過坐標(biāo)原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時(shí),、至少有一個(gè)為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因?yàn)橐渤闪?所以A不正確;對于B,命題“”為假命題時(shí),、至少有一個(gè)為假命題,所以B錯(cuò)誤;C錯(cuò)誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點(diǎn)睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎(chǔ)題2、B【解析】根據(jù)當(dāng)時(shí),可知在上單調(diào)遞減,結(jié)合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結(jié)果.【詳解】,當(dāng)時(shí),,在上單調(diào)遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當(dāng)時(shí),,不合題意;綜上所述:的解集為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,確定所構(gòu)造函數(shù)的單調(diào)性和奇偶性,進(jìn)而根據(jù)零點(diǎn)確定不等式的解集.3、C【解析】由題得,化簡即得解.【詳解】因?yàn)椋?,所以,解?故選:C4、A【解析】設(shè),先求出m、n,再利用面積公式即可求解.【詳解】在中,設(shè),則,解得:.因?yàn)椋?,所以的面積是.故選:A5、B【解析】由直徑所對圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因?yàn)?,所以又因?yàn)槠椒郑裕?,得,所以,即所以故選:B6、A【解析】根據(jù)給定條件構(gòu)造函數(shù),再探討其單調(diào)性并借助單調(diào)性判斷作答.【詳解】令函數(shù),求導(dǎo)得,當(dāng)時(shí),,于是得在上單調(diào)遞減,而,則,即,所以,故選:A7、B【解析】通過簡單隨機(jī)抽樣和分層抽樣的定義辨析得到選項(xiàng)【詳解】在①中,由于購買能力與收入有關(guān),應(yīng)該采用分層抽樣;在②中,由于個(gè)體沒有明顯差別,而且數(shù)目較少,應(yīng)該采用簡單隨機(jī)抽樣故選:B8、B【解析】由有最大值可判斷A;由,可得,,利用可判斷BC;,得,,可判斷D.【詳解】對于選項(xiàng)A,∵有最大值,∴等差數(shù)列一定有負(fù)數(shù)項(xiàng),∴等差數(shù)列為遞減數(shù)列,故公差小于0,故選項(xiàng)A正確;對于選項(xiàng)B,∵,且,∴,,∴,,則使的最大的n為17,故選項(xiàng)B錯(cuò)誤;對于選項(xiàng)C,∵,,∴,,故中最大,故選項(xiàng)C正確;對于選項(xiàng)D,∵,,∴,,故數(shù)列中的最小項(xiàng)是第9項(xiàng),故選項(xiàng)D正確.故選:B.9、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.10、A【解析】設(shè)橢圓的標(biāo)準(zhǔn)方程為,根據(jù)橢圓和雙曲線的定義可得到兩圖形離心率之間的關(guān)系,再根據(jù)橢圓的離心率范圍可得雙曲線的離心率取值范圍.【詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,,則有已知,兩式相減得,即,,因?yàn)?,解得故選:A.11、A【解析】結(jié)合等差數(shù)列的性質(zhì)得到,解不等式組即可求出結(jié)果.【詳解】由,即,解得,因?yàn)?故.故選:A.12、D【解析】由于,,為正數(shù),且,所以利用基本不等式可求出結(jié)果【詳解】解:因?yàn)檎龑?shí)數(shù),滿足(其中為正常數(shù)),所以,則,所以,所以故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由在區(qū)間上恒成立來求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:14、【解析】首先根據(jù)頻率分布直方圖計(jì)算出年齡在的頻率,從而可計(jì)算出年齡在的人數(shù).【詳解】年齡在的頻率為,所以年齡在的人數(shù)為.故答案為:.15、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時(shí),在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點(diǎn)處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于??碱}型.16、##4.5【解析】設(shè)為右焦點(diǎn),半焦距為,,由題意,,則,所以,從而有,最后利用均值不等式即可求解.【詳解】解:設(shè)為右焦點(diǎn),半焦距為,,由題意,,則,所以,即,故,當(dāng)且僅當(dāng)時(shí)取等,所以,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)F為BD的中點(diǎn),證明見解析;(2).【解析】(1)由為的中點(diǎn),取的中點(diǎn),連接易證四邊形為平行四邊形,得到,再利用線面平行的判定定理證明;(2)根據(jù)題意可得平面ABC與平面AFC的夾角為二面角,取的中點(diǎn)H為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求得平面的一個(gè)法向量,平面的一個(gè)法向量,設(shè)二面角為,由求解.【小問1詳解】為的中點(diǎn).如圖:取的中點(diǎn),連接∵,分別為,的中點(diǎn),∴且∵且∴平行且等于∴四邊形為平行四邊形,則∵平面ABC,平面ABC∴平面ABC【小問2詳解】由題意知,平面ABC與平面AFC的夾角為二面角,取的中點(diǎn)H為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.因?yàn)槿切螢榈妊切?,易求,則,,所以,,設(shè)平面的一個(gè)法向量為,則,即,解得設(shè)平面的一個(gè)法向量為,則,即,解得設(shè)二面角為,則,因?yàn)槎娼菫殇J角,所以余弦值為.18、(1)(2)【解析】由已知式子變形可得是以為首項(xiàng),為公比的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式易得利用錯(cuò)位相減法,得到數(shù)列的前項(xiàng)和為解析:(1)由,()知,又,∴是以為首項(xiàng),為公比的等比數(shù)列,∴,∴(2),,兩式相減得,∴點(diǎn)睛:本題主要考查數(shù)列的證明,錯(cuò)位相減法等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力,轉(zhuǎn)化能力和計(jì)算能力.第一問中將已知的遞推公式進(jìn)行變形,轉(zhuǎn)化為的形式來證明,還可以根據(jù)等比數(shù)列的定義來證明;第二問,將第一問中得到的結(jié)論代入,先得到的表達(dá)式,利用錯(cuò)位相減法,即可得到數(shù)列的前項(xiàng)和為19、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點(diǎn)N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點(diǎn)N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點(diǎn)M到平面PAD的距離等于點(diǎn)B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.20、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,依題意得到方程組,解得、,即可求出數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用分組求和法求和即可;【小問1詳解】解:設(shè)等差數(shù)列的公差為,由題意,得,解得或,因?yàn)?,所以【小?詳解】解:當(dāng)時(shí),,所以21、(1)(2)【解析】(1)根據(jù)垂直關(guān)系依次求解每個(gè)側(cè)面三角形邊長和面積即可得解;(2)建立空間直角坐標(biāo)系,利用向量法求解.小問1詳解】由題可得:,則,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交線,所以BC⊥平面SAB,BC⊥BS,,所以四棱錐的側(cè)面積【小問2詳解】以A為原點(diǎn),建立空間直角坐標(biāo)系如圖所示:設(shè)平面SCD的法向量,,取所以取為平面SAB的的法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論