版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省文山州第一中學(xué)2025年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓:,是直線的一點,過點作圓的切線,切點為,,則的最小值為()A. B.C. D.2.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取3個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.143.?dāng)?shù)列滿足,則數(shù)列的前n項和為()A. B.C. D.4.在四棱錐中,分別為的中點,則()A. B.C. D.5.拋物線的焦點到雙曲線的漸近線的距離是()A. B.C.1 D.6.與空間向量共線的一個向量的坐標(biāo)是()A. B.C. D.7.已知等比數(shù)列的前n項和為,若,,則()A.250 B.210C.160 D.908.拋物線上點的橫坐標(biāo)為4,則到拋物線焦點的距離等于()A.12 B.10C.8 D.69.已知命題,,則p的否定是()A. B.C. D.10.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當(dāng)時,n的最大值是()A.8 B.9C.10 D.1111.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.12.七巧板是中國古代勞動人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)極值點的個數(shù)是______14.已知,是雙曲線的兩個焦點,以線段為邊作正,若邊的中點在雙曲線上,則雙曲線的離心率____________.15.將一枚質(zhì)地均勻的骰子,先后拋擲次,則出現(xiàn)向上的點數(shù)之和為的概率是________.16.過拋物線的焦點且斜率為的直線交拋物線于A,兩點,,則的值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)零點個數(shù)18.(12分)p:方程有兩個不等的負(fù)實數(shù)根;q:方程無實數(shù)根,若為真命題,為假命題,求實數(shù)m的取值范圍、19.(12分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點,使得點到平面的距離為?若存在,確定點的位置;若不存在,請說明理由20.(12分)已知的展開式中,只有第6項的二項式系數(shù)最大(1)求n的值;(2)求展開式中含的項21.(12分)已知是公差不為0的等差數(shù)列,,且成等比數(shù)列(1)求數(shù)列通項公式;(2)設(shè),求數(shù)列的前項和22.(10分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當(dāng)點與點關(guān)于軸對稱時的面積是否達(dá)到最大?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長定理,將問題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設(shè)四邊形的面積為,由題設(shè)及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A2、D【解析】由隨機數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.3、D【解析】利用等差數(shù)列的前n項和公式得到,進(jìn)而得到,利用裂項相消法求和.【詳解】依題意得:,,,故選:D4、A【解析】結(jié)合空間幾何體以及空間向量的線性運算即可求出結(jié)果.【詳解】因為分別為的中點,則,,,故選:A.5、B【解析】先確定拋物線的焦點坐標(biāo),和雙曲線的漸近線方程,再由點到直線的距離公式即可求出結(jié)果.【詳解】因為拋物線的焦點坐標(biāo)為,雙曲線的漸近線方程為,由點到直線的距離公式可得.故選:B6、C【解析】根據(jù)空間向量共線的坐標(biāo)表示即可得出結(jié)果.【詳解】.故選:C.7、B【解析】設(shè)為等比數(shù)列,由此利用等比數(shù)列的前項和為能求出結(jié)果【詳解】設(shè),等比數(shù)列的前項和為為等比數(shù)列,為等比數(shù)列,解得故選:B8、C【解析】根據(jù)焦半徑公式即可求出【詳解】因為,所以,所以故選:C9、A【解析】直接根據(jù)全稱命題的否定寫出結(jié)論.【詳解】命題,為全稱命題,故p的否定是:.故選:A【點睛】全稱量詞命題的否定是特稱(存在)量詞命題,特稱(存在)量詞命題的否定是全稱量詞命題10、B【解析】先求出數(shù)列和的通項公式,然后利用分組求和求出,再對進(jìn)行賦值即可求解.【詳解】解:因為數(shù)列是以1為首項,2為公差的等差數(shù)列所以因為是以1為首項,2為公比的等比數(shù)列所以由得:當(dāng)時,即當(dāng)時,當(dāng)時,所以n的最大值是.故選:B.【點睛】關(guān)鍵點睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.11、A【解析】根據(jù)離心率及a,b,c的關(guān)系,可求得,代入即可得答案.【詳解】因為離心率,所以,所以,,則,所以C的漸近線方程為.故選:A12、D【解析】設(shè)正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設(shè)大正方形的邊長為,則面積為,陰影部分由一個大等腰直角三角形和一個梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】通過導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.14、##【解析】根據(jù)線段為邊作正,得到M在y軸上,求得M的坐標(biāo),再由,得到邊的中點坐標(biāo),代入雙曲線方程求解.【詳解】以線段為邊作正,則M在y軸上,設(shè),則,因為,所以邊的中點坐標(biāo)為,因為邊的中點在雙曲線上,所以,因為,所以,即,解得,因為,所以,故答案為:15、【解析】將向上的點數(shù)記作,先計算出所有的基本事件數(shù),并列舉出事件“出現(xiàn)向上的點數(shù)之和為”所包含的基本事件,然后利用古典概型的概率公式可計算出所求事件的概率.【詳解】將骰子先后拋擲次,出現(xiàn)向上的點數(shù)記作,則基本事件數(shù)為,向上的點數(shù)之和為這一事件記為,則事件所包含的基本事件有:、、,共個基本事件,因此,.故答案為:.【點睛】本題考查利用古典概型的概率公式計算概率,解題時一般要列舉出相應(yīng)的基本事件,遵循不重不漏的基本原則,考查計算能力,屬于基礎(chǔ)題.16、2【解析】求出直線的方程,與拋物線的方程聯(lián)立,利用根與系數(shù)的關(guān)系可,,由拋物線的定義可知,,,即可得到【詳解】解:拋物線的焦點,,準(zhǔn)線方程為,設(shè),,,,則直線的方程為,代入可得,,,由拋物線的定義可知,,,,解得故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時,無零點;當(dāng)時,有1個零點;當(dāng)時,有2個零點.【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點即可.【小問1詳解】當(dāng)時,,易知定義域為R,,當(dāng)時,;當(dāng)或時,故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;【小問2詳解】當(dāng)時,x正0負(fù)0正單增極大值單減極小值單增當(dāng)時,恒成立,∴;當(dāng)時,①當(dāng)時,,∴無零點;②當(dāng)時,,∴有1個零點;③當(dāng)時,,又當(dāng)時,單調(diào)遞增,,∴有2個零點;綜上所述:當(dāng)時,無零點;當(dāng)時,有1個零點;當(dāng)時,有2個零點【點睛】結(jié)論點睛:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用18、【解析】利用復(fù)合命題的真假推出兩個命題為一真一假,求出m的范圍即可.【詳解】:方程有兩個不等的負(fù)實數(shù)根,解得,:方程無實數(shù)根,解得,所以:,:或.因為為真命題,為假命題,所以真假,或假真.(1)當(dāng)真假時,即真為真,所以,解得;(2)當(dāng)假真時,即真為真,所以,解得.綜上,取值范圍為19、(1)(2)存在,點為線段的靠近點的三等分點【解析】(1)根據(jù)題意證得平面,進(jìn)而證得平面,得到平面,以點為坐標(biāo)原點,,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設(shè)點,求得平面的法向量為,結(jié)合向量的距離公式列出方程,求得的值,即可得到答案.【小問1詳解】解:因為四邊形為正方形,則,,由,,,所以平面,因為平面,所以,又由,,,所以平面,又因為平面,所以,因為且平面,所以平面,由平面,且,不妨以點為坐標(biāo)原點,,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,如圖所示,則,,,,可得,,,設(shè)平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問2詳解】解:設(shè)點,可得,,設(shè)平面的法向量為,則,取,可得,所以,所以點到平面的距離為,解得,即或因為,所以故當(dāng)點為線段的靠近點的三等分點時,點到平面的距離為.20、(1)10;(2);【解析】(1)利用二項式系數(shù)的性質(zhì)即可求出的值;(2)求出展開式的通項公式,然后令的指數(shù)為即可求解【小問1詳解】∵的展開式中,只有第6項的二項式系數(shù)最大,∴展開后一共有11項,則,解得;【小問2詳解】二項式的展開式的通項公式為,令,解得,∴展開式中含的項為21、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,依題意得到方程組,解得、,即可求出數(shù)列的通項公式;(2)由(1)可得,再利用分組求和法求和即可;【小問1詳解】解:設(shè)等差數(shù)列的公差為,由題意,得,解得或,因為,所以【小問2詳解】解:當(dāng)時,,所以22、(1);(2);(3)當(dāng)點與點關(guān)于軸對稱時,的面積達(dá)到最大,理由見解析.【解析】(1)設(shè),可得出,,將點的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得,結(jié)合韋達(dá)定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點為直線與橢圓的切點時,的面積達(dá)到最大,求出直線與橢圓的切點坐標(biāo),可得出結(jié)論.【小問1詳解】解:因為,設(shè),則,,所以,橢圓的方程可表示為,將點的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設(shè)線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設(shè)點、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達(dá)定理可得,,,,則,所以,解得,因此,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 喚醒護(hù)理的培訓(xùn)與教育
- 大豐市小海中學(xué)高二生物三同步課程講義第講生態(tài)系統(tǒng)的信息傳遞
- 2025年辦公自動化設(shè)備租賃合同(公司)
- 《PCB 電路板智能化專用設(shè)備運維技術(shù)規(guī)范》標(biāo)準(zhǔn)征求意見稿
- 大數(shù)據(jù)驅(qū)動的風(fēng)險管理模型
- 鼻竇炎患者的心理護(hù)理
- 金融系統(tǒng)對抗攻擊的防御策略
- 土地整治優(yōu)化
- 房顫冷凍消融治療與及進(jìn)展
- 2026 年中職康復(fù)治療技術(shù)(關(guān)節(jié)松動訓(xùn)練)試題及答案
- 學(xué)堂在線 臨床中成藥應(yīng)用 章節(jié)測試答案
- 物流協(xié)會管理辦法
- 跑步健康課件圖片
- 醫(yī)用耗材管理辦法原文
- 高州市緬茄杯數(shù)學(xué)試卷
- 傳承紅色基因鑄就黨紀(jì)之魂建黨104周年七一黨課
- 詩詞大會搶答題庫及答案
- 立式油罐知識培訓(xùn)課件
- 口腔健康科普指南
- 2025年《智能客戶服務(wù)實務(wù)》課程標(biāo)準(zhǔn)
- 公司便民雨傘管理制度
評論
0/150
提交評論