版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
上海浦東新區(qū)2025年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的離心率為,則()A. B.C. D.2.已知等差數(shù)列滿足,則等于()A. B.C. D.3.在空間直角坐標(biāo)系下,點關(guān)于平面的對稱點的坐標(biāo)為()A. B.C. D.4.若構(gòu)成空間的一個基底,則下列向量能構(gòu)成空間的一個基底的是()A.,, B.,,C.,, D.,,5.直線與圓相切,則實數(shù)等于()A.或 B.或C.3或5 D.5或36.已知直線和平面,且在上,不在上,則下列判斷錯誤的是()A.若,則存在無數(shù)條直線,使得B.若,則存在無數(shù)條直線,使得C.若存在無數(shù)條直線,使得,則D.若存在無數(shù)條直線,使得,則7.設(shè)是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則8.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形9.有一個圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點,則關(guān)于下列命題:①鉛垂的側(cè)面積為150cm2;②一只螞蟻從P點出發(fā)沿鉛垂側(cè)面爬行一周、最終又回到P點的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯誤C.①錯誤、②正確10.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六11.已知等差數(shù)列,若,,則()A.1 B.C. D.312.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,,的前項和為,則______.14.直線與直線間的距離為___________.15.直線l過拋物線的焦點F,且l與該拋物線交于不同的兩點,.若,則弦AB的長是____16.若直線與直線平行,且原點到直線的距離為,則直線的方程為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,是邊長為2的等邊三角形,,O是BC的中點,(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點,當(dāng)時,二面角E-BD-C大小為60°,求t的值18.(12分)已知函數(shù)的圖象在點處的切線與直線平行(是自然對數(shù)的底數(shù)).(1)求的值;(2)若在上恒成立,求實數(shù)的取值范圍.19.(12分)某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務(wù)活動,著力提升消費者維權(quán)意識,組織方從參加活動的群眾中隨機抽取120名群眾,按年齡將這120名群眾分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.(1)求圖中m的值;(2)估算這120名群眾的年齡的中位數(shù)(結(jié)果精確到0.1);(3)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取2名群眾組成維權(quán)志愿者服務(wù)隊,求恰有一名女性的概率.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時,求函數(shù)在內(nèi)的零點個數(shù).21.(12分)設(shè),為雙曲線:(,)的左、右頂點,直線過右焦點且與雙曲線的右支交于,兩點,當(dāng)直線垂直于軸時,△為等腰直角三角形(1)求雙曲線的離心率;(2)若雙曲線左支上任意一點到右焦點點距離的最小值為3,①求雙曲線方程;②已知直線,分別交直線于,兩點,當(dāng)直線傾斜角變化時,以為直徑的圓是否過軸上的定點,若過定點,求出定點的坐標(biāo);若不過定點,請說明理由22.(10分)某話劇表演小組由名學(xué)生組成,若從這名學(xué)生中任意選取人,其中恰有名男生的概率是.(1)求該小組中男、女生各有多少人?(2)若這名學(xué)生站成一排照相留念,求所有排法中男生不相鄰的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由離心率及橢圓參數(shù)關(guān)系可得,進而可得.【詳解】因為,則,所以.故選:D2、A【解析】利用等差中項求出的值,進而可求得的值.【詳解】因為得,因此,.故選:A.3、C【解析】根據(jù)空間坐標(biāo)系中點的對稱關(guān)系求解【詳解】點關(guān)于平面的對稱點的坐標(biāo)為,故選:C4、B【解析】由空間向量內(nèi)容知,構(gòu)成基底的三個向量不共面,對選項逐一分析【詳解】對于A:,因此A不滿足題意;對于B:根據(jù)題意知道,,不共面,而和顯然位于向量和向量所成平面內(nèi),與向量不共面,因此B正確;對于C:,故C不滿足題意;對于D:顯然有,選項D不滿足題意.故選:B5、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結(jié)果【詳解】由,得,則圓心為,半徑為2,因為直線與圓相切,所以,得,解得或,故選:C6、D【解析】根據(jù)直線和直線,直線和平面的位置關(guān)系依次判斷每一個選項得到答案.【詳解】若,則平行于過的平面與的交線,當(dāng)時,,則存在無數(shù)條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數(shù)條直線,使得,B正確;若存在無數(shù)條直線,使得,,,則,C正確;當(dāng)時,存在無數(shù)條直線,使得,D錯誤.故選:D.7、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的8、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.9、C【解析】根據(jù)圓錐的側(cè)面展開圖為扇形,由扇形的面積公式計算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側(cè)面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯誤.將其側(cè)面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C10、C【解析】求出二項式定理的通項公式,得到除以7余數(shù)是1,然后利用周期性進行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:11、C【解析】利用等差數(shù)列的通項公式進行求解.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,解得.故選:C.12、B【解析】將圓的方程化為標(biāo)準(zhǔn)方程,即可求出半徑的表達式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點睛】本題考查圓的方程,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析出當(dāng)為正奇數(shù)時,,可求得的值,再分析出當(dāng)為正偶數(shù)時,,可求得的值,進而可求得的值.【詳解】由題知,當(dāng)為正奇數(shù)時,,于是,,,,,所以.又因為當(dāng)為正偶數(shù)時,,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點睛】關(guān)鍵點點睛:本題的解題關(guān)鍵在于分析出當(dāng)為正奇數(shù)時,,以及當(dāng)為正偶數(shù)時,,找出規(guī)律,結(jié)合并項求和法求出以及的值.14、【解析】利用平行間的距離公式可求得結(jié)果.【詳解】由平行線間的距離公式可知,直線、間的距離為.故答案為:.15、4【解析】由題意得,再結(jié)合拋物線的定義即可求解.【詳解】由題意得,由拋物線的定義知:,故答案為:4.16、【解析】可設(shè)直線的方程為,利用點到直線的距離公式求得,即可得解.【詳解】可設(shè)直線的方程為,即,則原點到直線的距離為,解得,所以直線的方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)3【解析】(1)證得平面BCD,結(jié)合面面垂直判定定理即可得出結(jié)論;(2)建立空間直角坐標(biāo)系,利用空間向量求二面角的公式可得,進而解方程即可求出結(jié)果.【小問1詳解】因為,O是BC的中點,所以,又因為,且,平面BCD,平面BCD,所以平面BCD,因為平面ABC,所以平面平面BCD【小問2詳解】連接OD,又因為是邊長為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O(shè)為坐標(biāo)原點,OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系設(shè),則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因為A-BCD的體積為,所以,解得,即A(0,0,3),,∵,∴,設(shè)平面BCD的法向量為,,則,取平面BCD的法向量為,,,設(shè)是平面BDE的法向量,則,∴取平面BDE的法向量,解得或(舍)18、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意結(jié)合導(dǎo)數(shù)的幾何意義列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,從而,令,利用導(dǎo)數(shù)求出函數(shù)的最小值,即可求得實數(shù)的取值范圍【小問1詳解】解:,因為函數(shù)的圖象在點處的切線與直線平行,所以,解得;【小問2詳解】解:在上恒成立,即在上恒成立,,,令,則,當(dāng)時,;當(dāng)時,,函數(shù)在上單調(diào)遞減,有上單調(diào)遞增,,,即實數(shù)的取值范圍是19、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有頻率和為1求出;(2)求出概率對應(yīng)的值即為中位數(shù);(3)求出第一組中總?cè)藬?shù),得女性人數(shù),然后求得恰有一名女性的方法數(shù)和總的方法數(shù)后可得概率【小問1詳解】解:因為頻率分布直方圖的小矩形面積和為1,所以,解得,【小問2詳解】解:前2組頻率和為,前3組頻率和為,所以中位數(shù)在第3組,設(shè)中位數(shù)為,則,;【小問3詳解】解:第一組總?cè)藬?shù)為,男性人2人,則女性有4人,不妨記兩名男性為,四名女性為,則隨機抽取2名群眾的可能為,,,共15種方案,其中恰有一名女性的方法數(shù),共8種,所以第1組中隨機抽取2名群眾組成維權(quán)志愿者服務(wù)隊,求恰有一名女性的概率為20、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負(fù)確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進行放縮,只需證即,再利用導(dǎo)數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當(dāng)時,,在單調(diào)遞增;當(dāng)時,令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】因為,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減,又當(dāng)時,,故在恒成立,即;因為,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時該函數(shù)單調(diào)遞增,令,解得,此時該函數(shù)單調(diào)遞減,又當(dāng)時,,也即;令,則,令,解得,此時該函數(shù)單調(diào)遞減,令,解得,此時該函數(shù)單調(diào)遞增,又當(dāng)時,,也即;又,故恒成立,則在恒成立,又,故當(dāng)時,恒成立,則在上的零點個數(shù)是.【點睛】本題考察利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,以及函數(shù)零點問題的處理;本題第二問處理的關(guān)鍵是通過分離參數(shù)和構(gòu)造函數(shù),證明恒成立,屬綜合困難題.21、(1);(2)①;②定點有兩個,【解析】(1)由雙曲線方程有、、,根據(jù)已知條件有,即可求離心率.(2)①由題設(shè)有,結(jié)合(1)求雙曲線參數(shù),寫出雙曲線方程即可;②由題設(shè)可設(shè)為,,,聯(lián)立雙曲線方程結(jié)合韋達定理求,,,,再由、的方程求,坐標(biāo),若在為直徑的圓上點,由結(jié)合向量垂直的坐標(biāo)表示列方程,進而求出定點坐標(biāo).【小問1詳解】由題設(shè),若,且,又△為等腰直角三角形,∴,即,則又,可得.【小問2詳解】由題設(shè),,由(1)有,則,即,①由上可知:雙曲線方程為.②由①知:,且直線的斜率不為0,設(shè)為,,,聯(lián)立直線與雙曲線得:,∴,,則,∴,∴直線為;直線為;∴,,若在為直徑的圓上點,∴,且,∴,令,則,∴,即,∴或,即過定點.【點睛】關(guān)鍵點點睛:第二問的②,設(shè)直線為,聯(lián)立直線與雙曲線,應(yīng)用韋達定理求,,,,進而根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國中煤華東分公司及其所屬企業(yè)第一批社會招聘52人筆試參考題庫附帶答案詳解(3卷)
- 黃埔區(qū)2024廣東廣州市黃浦區(qū)招聘初級雇員1人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 越秀區(qū)2024廣東中共廣州市越秀區(qū)紀(jì)律檢查委員會招聘輔助人員7人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 福建省2024福建福州市倉山區(qū)文化體育和旅游局招聘1人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 柳州市2024廣西柳州市柳江區(qū)成團鎮(zhèn)事業(yè)單位直接考核入編招聘筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 山東省2024年山東省化工安全科學(xué)研究院公開招聘中級專業(yè)技術(shù)人員(8人)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 國家事業(yè)單位招聘2024自然資源部國土衛(wèi)星遙感應(yīng)用中心招聘應(yīng)屆畢業(yè)生擬聘用人員筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 北海市2024國家統(tǒng)計局北海調(diào)查隊招聘1人(截止5月17日)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 光明區(qū)2024年4月廣東深圳光明區(qū)文化廣電旅游體育局招聘一般類崗位專干2人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 2025年贛州經(jīng)開區(qū)紀(jì)檢監(jiān)察工委招聘備考題庫化技術(shù)人員及1套參考答案詳解
- 基于無人機的精準(zhǔn)投遞技術(shù)研究
- 人教版五年級《語文上冊》期末試卷(全面)
- 項目八 任務(wù)二:機械手液壓系統(tǒng)分析
- (完整文本版)日文履歷書(文本テンプレート)
- 國家開放大學(xué)《管理英語4》邊學(xué)邊練Unit 5-8(答案全)
- 時尚·魅力-大學(xué)生魅商修煉手冊智慧樹知到期末考試答案章節(jié)答案2024年南昌大學(xué)
- 《金牌店長培訓(xùn)》課件
- 宜昌市點軍區(qū)2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)綜合測試卷(含答案)
- 井下單項、零星工程管理制度模版
- 道路危險貨物運輸企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化評價實施細(xì)則
- 中國馬克思主義與當(dāng)代思考題(附答案)
評論
0/150
提交評論