【3套】人教版九年級(jí)數(shù)學(xué)下冊(cè)同步練習(xí):第二十八章-本章復(fù)習(xí)課_第1頁(yè)
【3套】人教版九年級(jí)數(shù)學(xué)下冊(cè)同步練習(xí):第二十八章-本章復(fù)習(xí)課_第2頁(yè)
【3套】人教版九年級(jí)數(shù)學(xué)下冊(cè)同步練習(xí):第二十八章-本章復(fù)習(xí)課_第3頁(yè)
【3套】人教版九年級(jí)數(shù)學(xué)下冊(cè)同步練習(xí):第二十八章-本章復(fù)習(xí)課_第4頁(yè)
【3套】人教版九年級(jí)數(shù)學(xué)下冊(cè)同步練習(xí):第二十八章-本章復(fù)習(xí)課_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE人教版九年級(jí)數(shù)學(xué)下冊(cè)同步練習(xí):第二十八章本章復(fù)習(xí)課_人教版初中數(shù)學(xué)九年級(jí)下冊(cè)第28章銳角三角函數(shù)本章復(fù)習(xí)課類型之一銳角三角函數(shù)的定義1.[2018·柳州]如圖28-1,在Rt△ABC中,∠C=90°,BC=4,AC=3,則sinB=(A)圖28-1A.eq\f(3,5)B.eq\f(4,5)C.eq\f(3,7)D.eq\f(3,4)【解析】由勾股定理,得AB=eq\r(AC2+BC2)=eq\r(32+42)=5.根據(jù)正弦的定義,得sinB=eq\f(AC,AB)=eq\f(3,5).2.[2018·衢州]如圖28-2,AB是圓錐的母線,BC為底面直徑,已知BC=6cm,圓錐的側(cè)面積為15πcm2,則sin∠ABC的值為(C)圖28-2A.eq\f(3,4) B.eq\f(3,5)C.eq\f(4,5) D.eq\f(5,3)【解析】∵BC=6,∴圓錐側(cè)面展開扇形的弧長(zhǎng),即底面圓的周長(zhǎng)為6π,∵S扇形=eq\f(1,2)×6πr=15π,∴r=5,即圓錐的母線長(zhǎng)為5,∵AO⊥BC,BO=eq\f(1,2)BC=3,∴在Rt△ABO中,AO=4,∴sin∠ABC=eq\f(AO,AB)=eq\f(4,5).3.[2018·婁底]如圖28-3,由四個(gè)全等的直角三角形圍成的大正方形的面積是169,小正方形的面積為49,則sinα-cosα=(D)圖28-3A.eq\f(5,13) B.-eq\f(5,13)C.eq\f(7,13) D.-eq\f(7,13)【解析】∵小正方形面積為49,大正方形面積為169,∴小正方形的邊長(zhǎng)是7,大正方形的邊長(zhǎng)是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得AC2+7AC解得AC=5,AC=-12(舍去),∴BC=eq\r(AB2-AC2)=12,∴sinα=eq\f(AC,AB)=eq\f(5,13),cosα=eq\f(BC,AB)=eq\f(12,13),∴sinα-cosα=eq\f(5,13)-eq\f(12,13)=-eq\f(7,13).類型之二特殊角的三角函數(shù)值4.在△ABC中,∠A,∠B都是銳角,若sinA=eq\f(\r(3),2),cosB=eq\f(1,2),則∠C=__60°__.【解析】∵在△ABC中,∠A,∠B都是銳角,sinA=eq\f(\r(3),2),cosB=eq\f(1,2),∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.5.一般地,當(dāng)α,β為任意角時(shí),sin(α+β)與sin(α—β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβ;sin(α—β)=sinαcosβ-cosαsinβ.例如sin90°=sin(60°+30°)=sin60°cos30°+cos60°sin30°=eq\f(\r(3),2)×eq\f(\r(3),2)+eq\f(1,2)×eq\f(1,2)=1.類似地,可以求得sin15°的值是__eq\f(\r(6)-\r(2),4)__.6.[2018·天水]eq\r(4)+(-3)2+20180×|1-eq\r(3)|+tan45°-2sin60°.解:原式=2+9+1×(eq\r(3)-1)+1-2×eq\f(\r(3),2)=11+eq\r(3)-1+1-eq\r(3)=11.類型之三解直角三角形7.[2018·常州]某數(shù)學(xué)研究性學(xué)習(xí)小組制作了如圖圖28-4的三角函數(shù)計(jì)算圖尺:在半徑為1的半圓形量角器中,畫一個(gè)直徑為1的圓,把刻度尺CA的0刻度固定在半圓的圓心O處,刻度尺可以繞點(diǎn)O轉(zhuǎn),從圖中所示的圖尺可讀出sin∠AOB的值是(D)A.eq\f(5,8)B.eq\f(7,8)C.eq\f(7,10)D.eq\f(4,5)圖28-4第7題答圖【解析】如答圖,連接AD,由題意可知OA=0.8,OD=1,∵∠ODA+∠DOA=∠DOA+∠BOA=90°,∴∠ODA=∠AOB,∵OD是直徑,∴∠DAO=90°,∴sin∠AOB=eq\f(OA,OD)=eq\f(0.8,1)=eq\f(4,5),故選D.類型之四仰角、俯角問題8.[2017·邵陽(yáng)]如圖28-5,運(yùn)載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于地面R處的雷達(dá)測(cè)得AR的距離是40km,仰角是30°.ns后,火箭到達(dá)B點(diǎn),此時(shí)仰角是45°,則火箭在這ns中上升的高度為__20eq\r(3)-20__km.圖28-5【解析】先在Rt△ALR中,根據(jù)AR=40km,∠ARL=30°,求出AL=20和LR=20eq\r(3),再在Rt△BLR中,求出BL=LR=20eq\r(3),所以火箭在這ns中上升的高度AB=BL-AL=(20eq\r(3)-20)km.9.[2018·安徽]為了測(cè)量豎直旗桿AB的高度,某綜合實(shí)踐小組在地面D處豎直放置標(biāo)桿CD,并在地面上水平放置了平面鏡E,使得B,E,D在同一水平線上,如圖28-6所示.該小組在標(biāo)桿的F處通過(guò)平面鏡E恰好觀測(cè)到旗桿頂A(此時(shí)∠AEB=∠FED).在F處測(cè)得旗桿頂A的仰角為39.3°,平面鏡E的俯角為45°,F(xiàn)D=1.8m,問旗桿AB的高度約為多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):tan39.3°≈0.82,tan84.3°≈10.02)圖28-6第9題答圖解:如答圖,過(guò)點(diǎn)F作AB的垂線交AB于點(diǎn)H,交AE于點(diǎn)G,則FH∥DB,∴∠1=45°,∠2=∠3=45°,∴∠FEG=90°,在Rt△FDE中,sin∠1=eq\f(FD,FE)=eq\f(\r(2),2),∴FE=eq\r(2)FD,在Rt△FEG中,cos∠GFE=eq\f(FE,FG)=eq\f(\r(2),2),∴FG=eq\r(2)FE,∴FG=2FD=3.6(m),設(shè)AH=xm,則GH=xm,F(xiàn)H=(3.6+x)m,在Rt△AFH中,tan∠AFH=eq\f(AH,FH)=eq\f(x,x+3.6)≈0.82,解得x≈16.4,∴AB=AH+BH=AH+FD≈18(m).答:旗桿AB的高度約為18m.類型之五方位角問題10.[2018·十堰]如圖28-7,一艘海輪位于燈塔C的北偏東45°方向,距離燈塔100海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔C的南偏東30°方向上的B處,求此時(shí)船距燈塔的距離.(參考數(shù)據(jù):eq\r(2)≈1.414,eq\r(3)≈1.732,結(jié)果取整數(shù))圖28-7第10題答圖解:如答圖,作CD⊥AB于D.在Rt△ACD中,∠CDA=90°,∠ACD=90°-45°=45°,∴CD=AC·cos45°=100×eq\f(\r(2),2)=50eq\r(2),在Rt△CDB中,∠CDB=90°,∠CBD=30°,∴BC=2CD=100eq\r(2)海里≈141海里.答:B處距離燈塔C有141海里.11.[2018·淮安]為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測(cè)得涼亭P在北偏東60°的方向上;從A處向正東方向行走200m,到達(dá)公路l上的點(diǎn)B處,再次測(cè)得涼亭P在北偏東45°的方向上,如圖28-8所示,求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):eq\r(2)≈1.414,eq\r(3)≈1.732)圖28-8第11題答圖解:如答圖,過(guò)P作PC⊥AB于C,在Rt△ACP中,tan∠APC=tan60°=eq\f(AC,PC),即AC=PCtan60°=eq\r(3)PC,同理可得,BC=PC,∵AB=AC-BC=eq\r(3)PC-PC=200,∴PC=100eq\r(3)+100≈273.答:涼亭P到公路l的距離約為273m.類型之六坡度問題12.[2018·重慶A卷]如圖28-9,旗桿及升旗臺(tái)的剖面和教學(xué)樓的剖面在同一平面上,旗桿與地面垂直,在教學(xué)樓底面E處測(cè)得旗桿頂端的仰角∠AED=58°,升旗臺(tái)底部到教學(xué)樓底部的距離DE=7m,升旗臺(tái)坡面CD的坡度i=1∶0.75,坡長(zhǎng)CD=2m,若旗桿底部到坡面CD的水平距離BC=1m,則旗桿AB的高度為(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)(B)A.12.6m B.13.1mC.14.7m D.16.3m圖28-9第12題答圖【解析】如答圖,過(guò)點(diǎn)C作CN⊥ED的延長(zhǎng)線于點(diǎn)N,延長(zhǎng)AB交ED的延長(zhǎng)線于點(diǎn)M,則BM⊥ED的延長(zhǎng)線于點(diǎn)M,則MN=BC=1m.∵斜坡CD的坡比i=1∶0.75,∴令CN=x,則DN=0.75x,在Rt△CDN中,由勾股定理,得x2+(0.75x)2=22,解得x=1.6,從而DN=1.2m,∵DE=7m,∴ME=MN+ND+DE=9.2m,AM=(AB+1.6)m,在Rt△AME中,tan∠AEM=eq\f(AM,EM),即eq\f(AB+1.6,9.2)=tan58°,從而1.6≈eq\f(AB+1.6,9.2),解得AB≈13.12≈13.1(m),故選B.類型之七解直角三角形與圓的綜合13.如圖28-10,PA與⊙O相切于點(diǎn)A,過(guò)點(diǎn)A作AB⊥OP,垂足為C,交⊙O于點(diǎn)B.連接PB,AO,并延長(zhǎng)AO交⊙O于點(diǎn)D,與PB的延長(zhǎng)線交于點(diǎn)E.(1)求證:PB是⊙O的切線;(2)若OC=3,AC=4,求sinE的值.圖28-10第13題答圖解:(1)證明:如答圖,連接OB.∵PA切⊙O于點(diǎn)A,∴∠PAO=90°.∵OC⊥弦AB,∴AC=BC,從而直線OP垂直平分線段AB.∴PA=PB.又∵PO=PO,OA=OB,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO=90°,∴PB⊥OB.又∵點(diǎn)B在⊙O上,∴PB是⊙O的切線;(2)如答圖,連接BD.∵OC⊥AB,AC=4,∴AB=2AC在Rt△AOC中,由勾股定理,得OA=eq\r(OC2+AC2)=eq\r(32+42)=5,從而AD=2AO=10.∵AC=BC,OA=OD,∴BD=2OC=6.∵PB是⊙O的切線,∴∠EBD+∠OBD=90°.∵AD是⊙O的直徑,∴∠ABO+∠OBD=90°.∴∠ABO=∠EBD.∵OA=OB,∴∠ABO=∠OAB.∴∠EBD=∠EAB.又∵∠E=∠E,∴△EBD∽△EAB.∴eq\f(ED,EB)=eq\f(EB,EA)=eq\f(DB,AB),即eq\f(ED,EB)=eq\f(EB,ED+10)=eq\f(6,8).∴DE=eq\f(90,7),OE=eq\f(125,7).∴sinE=eq\f(OB,OE)=eq\f(7,25).14.[2018·臨沂]如圖28-11,△ABC為等腰三角形,O是底邊BC的中點(diǎn),腰AB與⊙O相切于點(diǎn)D,OB與⊙O相交于點(diǎn)E.(1)求證:AC是⊙O的切線;(2)若BD=eq\r(3),BE=1,求陰影部分的面積.圖28-11第14題答圖解:(1)證明:如答圖,過(guò)點(diǎn)O作OF⊥AC,垂足為點(diǎn)F,連接OD,OA.∵△ABC是等腰三角形,點(diǎn)O是底邊BC的中點(diǎn),∴OA是△ABC的高線,也是∠BAC的平分線,∵AB是⊙O的切線,∴OD⊥AB,又∵OF⊥AC,∴OF=OD,即OF是⊙O的半徑,∴AC是⊙O的切線;(2)在Rt△BOD中,設(shè)OD=OE=x,則OB=x+1,由勾股定理,得(x+1)2=x2+(eq\r(3))2,解得x=1,即OD=OF=1.∵sin∠BOD=eq\f(BD,OB)=eq\f(\r(3),2),∴∠BOD=60°,∴∠AOD=90°-∠BOD=30°,∴AD=AF=OD×tan∠AOD=eq\f(\r(3),3),∴S陰影=S四邊形ADOF-S扇形DOF=eq\f(1,2)AD×OD×2-eq\f(60,360)π×12=eq\f(\r(3),3)-eq\f(π,6)=eq\f(2\r(3)-π,6).

人教版數(shù)學(xué)九年級(jí)下冊(cè)第二十八章銳角三角函數(shù)單元提優(yōu)訓(xùn)練人教版數(shù)學(xué)九年級(jí)下冊(cè)第二十八章銳角三角函數(shù)單元提優(yōu)訓(xùn)練選擇題1.在△ABC中,∠C=90°,AB=6,cosA=A.18 B.2 C.12 D.2.某樓梯的側(cè)面如圖所示,已測(cè)得BC的長(zhǎng)約為3.5米,∠BCA約為29°,則該樓梯的高度AB可表示為(B)A.3.5sin29°B.3.5cos29°C.3.5tan29°D.eq\f(3.5,cos29°)3.在Rt△ABC,∠ACB=90°,BC=1,AB=2,則下列結(jié)論正確的是(C)A.sinA=eq\f(\r(3),2)B.tanA=eq\f(1,2)C.cosA=eq\f(\r(3),2)D.以上都不對(duì)4.如圖K-16-3,在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,則下列結(jié)論不正確的是(C)圖K-16-3A.sinB=eq\f(AD,AB)B.sinB=eq\f(AC,BC)C.sinB=eq\f(AD,AC)D.sinB=eq\f(CD,AC)5.已知一棵樹的影長(zhǎng)是30m,同一時(shí)刻一根長(zhǎng)1.5m的標(biāo)桿的影長(zhǎng)為3m,則這棵樹的高度是(A).A.15m B.60m C.20m D.106.如圖,一輛小車沿傾斜角為α的斜坡向上行駛13米,已知cosα=eq\f(12,13),則小車上升的高度是(B)A.5米B.6米C.6.5米D.12米7.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為(B)A.eq\f(\r(15),4)B.eq\f(1,4)C.eq\f(\r(15),15)D.eq\f(4\r(17),17)8.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為(A)A.eq\f(\r(15),4)B.eq\f(1,4)C.eq\f(\r(15),15)D.eq\f(4\r(17),17)9.在Rt△ABC中,∠C=90°,∠A、∠B的對(duì)邊分別是a、b,且滿足a2-ab-b2=0,則tanA等于(B)A.1 B.1+52 C.1-10.如圖,一河壩的橫斷面為等腰梯形ABCD,壩頂寬10米,壩高12米,斜坡AB的坡度i=1∶1.5,則壩底AD的長(zhǎng)度為(D)A.26米B.28米C.30米D.46米二、填空題11.如圖,在菱形ABCD中,AE⊥DC于E,AE=8cm,sinD=23,則菱形ABCD的面積是______.

【答案】96cm212.如圖,路燈距離地面8米,身高1.6米的小明站在距離燈的底部(點(diǎn)O)20米的A處,則小明的影子AM長(zhǎng)為_____米.【答案】513.△ABC中,∠C=90°,AB=8,cosA=eq\f(3,4),則BC的長(zhǎng)______.【答案】2eq\r(7)14.已知對(duì)任意銳角α,β均有cos(α+β)=cosα·cosβ-sinα·sinβ,則cos75°=________.【答案】eq\f(\r(6)-\r(2),4)15.如圖,一名滑雪運(yùn)動(dòng)員沿著傾斜角為34°的斜坡,從A滑行至B,已知AB=500米,則這名滑雪運(yùn)動(dòng)員的高度下降_______米(參考數(shù)據(jù):sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【答案】280三、解答題16.如圖,在Rt△ABC中,∠C=90°,D是BC邊上一點(diǎn),AC=2,CD=1,設(shè)∠CAD=a.

(1)求sina、cosa、tana的值;

(2)若∠B=∠CAD,求BD的長(zhǎng).

解:在Rt△ACD中,

∵AC=2,DC=1,

∴AD=AC2+CD2=5.

(1)sinα=CDAD=15=55,cosα=ACAD=25=255,tanα=CDAC=12;

(2)在Rt△ABC中,

tanB=ACBC,

即tanα=217.如圖,MN表示一段筆直的高架道路,線段AB表示高架道路旁的一排居民樓,已知點(diǎn)A到MN的距離為15米,BA的延長(zhǎng)線與MN相交于點(diǎn)D,且∠BDN=30°,假設(shè)汽車在高速道路上行駛時(shí),周圍39米以內(nèi)會(huì)受到噪音(XRS)的影響.(1)過(guò)點(diǎn)A作MN的垂線,垂足為點(diǎn)H,如果汽車沿著從M到N的方向在MN上行駛,當(dāng)汽車到達(dá)點(diǎn)P處時(shí),噪音開始影響這一排的居民樓,那么此時(shí)汽車與點(diǎn)H的距離為多少米?(2)降低噪音的一種方法是在高架道路旁安裝隔音板,當(dāng)汽車行駛到點(diǎn)Q時(shí),它與這一排居民樓的距離QC為39米,那么對(duì)于這一排居民樓,高架道路旁安裝的隔音板至少需要多少米長(zhǎng)(精確到1米)(參考數(shù)據(jù):eq\r(3)≈1.7)?解:(1)連接AP,由題意得AH⊥MN,AH=15,AP=39,在Rt△APH中,由勾股定理得PH=36.答:此時(shí)汽車與點(diǎn)H的距離為36米;(2)由題意可知,PQ段高架道路旁需要安裝隔音板,QC⊥AB,∠QDC=30°,QC=39.在Rt△DCQ中,DQ=2QC=78,在Rt△ADH中,DH=AH·cot30°=15eq\r(3).∴PQ=PH-DH+DQ≈114-15×1.7=88.5≈89(米)。答:高架道路旁安裝的隔音板至少需要89米長(zhǎng).18.如圖所示,已知在Rt△ABC中,∠C=90°,D是BC邊上的一點(diǎn),AC=2,CD=1,記∠CAD=α.(1)試寫出α的三個(gè)三角函數(shù)值;(2)若∠B=α,求BD的長(zhǎng).解:(1)sinα=eq\f(\r(5),5),cosα=eq\f(2\r(5),5),tanα=eq\f(1,2);(2)BC=eq\f(AC,tanα)=eq\f(2,\f(1,2))=4,∴BD=BC-CD=4-1=3.19.某太陽(yáng)能熱水器的橫截面示意圖如圖K-18-4所示,已知真空熱水管AB與支架CD所在直線相交于點(diǎn)O,且OB=OD.支架CD與水平線AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的長(zhǎng);(2)求真空熱水管AB的長(zhǎng).(結(jié)果均保留根號(hào))圖K-18-4解:(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴cos30°=eq\f(CD,80)=eq\f(\r(3),2),解得CD=40eq\r(3)(cm).即支架CD的長(zhǎng)為40eq\r(3)cm.(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴tan30°=eq\f(OC,165)=eq\f(\r(3),3),解得OC=55eq\r(3)(cm),∴OA=2OC=110eq\r(3)cm,OB=OD=OC-CD=55eq\r(3)-40eq\r(3)=15eq\r(3)(cm),AB=OA-OB=110eq\r(3)-15eq\r(3)=95eq\r(3)(cm).即真空熱水管AB的長(zhǎng)為95eq\r(3)cm.20.如圖,在△ABC中,AD⊥BC,AB=10,BD=8,CD=23.

(1)求AD的長(zhǎng).(2)求△ABC的周長(zhǎng).

解:(1)∵在△ABC中,AD是BC邊上高,∴△ADC和△ABD都是直角三角形,在Rt△ABD中,AB=10,BD=8,

AD=A(2)在Rt△ACD中,

AC=AD2+CD2=62+2=10+4=18+63

期末復(fù)習(xí):人教版九年級(jí)數(shù)學(xué)下冊(cè)第28章銳角三角函數(shù)單元檢測(cè)試卷(解析版)一、單選題(共10題;共30分)1.sin60°的值為(

)A.

3

B.

32

C.

222.在△ABC中,∠C=90o,若cosB=32A.

30°

B.

60°

C.

45°

D.

903.在Rt△ABC中,∠C=90°,AB=13,AC=5,則sinA的值為(

)A.

513

B.

1213

C.

512

D.

1254.在ΔABC中,∠C=90°,AC=BC,則A.

12

B.

22

C.

32

D.

15.在△ABC中,∠C=90°,AC=9,sinB=35A.

15

B.

12

C.

9

D.

66.一個(gè)物體從A點(diǎn)出發(fā),沿坡度為1:7的斜坡向上直線運(yùn)動(dòng)到B,AB=30米時(shí),物體升高()米.A.

307

B.

32

C.

306

D.

以上的答案都不對(duì)7.如圖,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科學(xué)計(jì)算器求邊AC的長(zhǎng),則下列按鍵順序正確的是(

A.

5÷tan26°=

B.

5÷sin26°=

C.

5×cos26°=

D.

5×tan26°=8.在△ABC中,若|sinA﹣12|+(22﹣cosB)A.

45°

B.

75°

C.

105°

D.

120°9.在RtΔABC中,∠C=90°,a=5A.

512

B.

513

C.

125

D.

1210.在學(xué)習(xí)解直角三角形以后,重慶八中數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上的影長(zhǎng)BC為6米,落在斜坡上的影長(zhǎng)CD為4米,AB⊥BC,同一時(shí)刻,光線與旗桿的夾角為37°,斜坡的坡角為30°,旗桿的高度AB約為(

)米.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,3≈1.73)

A.

10.61

B.

10.52

C.

9.87

D.

9.37二、填空題(共10題;共30分)11.如圖所示,在建筑物AB的底部a米遠(yuǎn)的C處,測(cè)得建筑物的頂端A點(diǎn)的仰角為α,則建筑物AB的高可表示為________.12.如圖,在邊長(zhǎng)為1的小正反形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,則tanB的值為________.13.如圖,從甲樓底部A處測(cè)得乙樓頂部C處的仰角是30°,從甲樓頂部B處測(cè)得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是________m(結(jié)果保留根號(hào))

14.如圖,在菱形ABCD中,AE⊥BC,E為垂足,若cosB=45,EC=2,P是AB邊上的一個(gè)動(dòng)點(diǎn),則線段PE的長(zhǎng)度的最小值是________

15.如圖,△ABC中,∠C=90°,AC=3,AB=5,點(diǎn)D是邊BC上一點(diǎn).若沿AD將△ACD翻折,點(diǎn)C剛好落在AB邊上點(diǎn)E處,則BD=________.16.如下圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對(duì)角線BD翻折,點(diǎn)C落在點(diǎn)C′處,BC′交AD于點(diǎn)E,則線段DE的長(zhǎng)為________.17.如圖,某城市的電視塔AB坐落在湖邊,數(shù)學(xué)老師帶領(lǐng)學(xué)生隔湖測(cè)量電視塔AB的高度,在點(diǎn)M處測(cè)得塔尖點(diǎn)A的仰角∠AMB為22.5°,沿射線MB方向前進(jìn)200米到達(dá)湖邊點(diǎn)N處,測(cè)得塔尖點(diǎn)A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為________米(結(jié)果保留根號(hào)).

18.在Rt△ABC中,∠ACB=90°,a=2,b=3,則tanA=________

19.如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連結(jié)PD,以PD為邊,在PD的右側(cè)按如圖所示的方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)是________.

20.如圖.一-艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測(cè)得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處此時(shí)測(cè)得島礁P在北偏東30°方向,同時(shí)測(cè)得島礁P正東方向上的避風(fēng)港M在北偏東60°方向?yàn)榱嗽谂_(tái)風(fēng)到來(lái)之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/小時(shí)的速度繼續(xù)航行________小時(shí)即可到達(dá)(結(jié)果保留根號(hào))三、解答題(共8題;共60分)21.如圖,銳角△ABC中,AB=10cm,BC=9cm,△ABC的面積為27cm2.求tanB的值.

22.如圖為護(hù)城河改造前后河床的橫斷面示意圖,將河床原豎直迎水面BC改建為坡度1:0.5的迎水坡AB,已知AB=45米,則河床面的寬減少了多少米.(即求AC的長(zhǎng))

23.中考英語(yǔ)聽力測(cè)試期間T需要杜絕考點(diǎn)周圍的噪音.如圖,點(diǎn)A是某市一中考考點(diǎn),在位于考點(diǎn)南偏西15°方向距離500米的C點(diǎn)處有一消防隊(duì).在聽力考試期間,消防隊(duì)突然接到報(bào)警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報(bào)聲傳播半徑為400米,若消防車的警報(bào)聲對(duì)聽力測(cè)試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?

說(shuō)明理由.(3≈1.732)

24.熱氣球的探測(cè)器顯示,從熱氣球底部A處看一棟高樓頂部B的仰角為30°,看這棟樓底部C的俯角為45°,已知樓高是120m,熱氣球若要飛越高樓,問至少要繼續(xù)上升多少米?(結(jié)果保留根號(hào))

25.如圖:我漁政310船在南海海面上沿正東方向勻速航行,在A點(diǎn)觀測(cè)到我漁船C在北偏東60°方向的我國(guó)某傳統(tǒng)漁場(chǎng)捕魚作業(yè).若漁政310船航向不變,航行半小時(shí)后到達(dá)B點(diǎn),觀測(cè)到我漁船C在東北方向上.問:漁政310船再按原航向航行多長(zhǎng)時(shí)間,離漁船C的距離最近?(漁船C捕魚時(shí)移動(dòng)距離忽略不計(jì),結(jié)果不取近似值)26.如圖,某煤礦因不按規(guī)定操作發(fā)生瓦斯爆炸,救援隊(duì)立即趕赴現(xiàn)場(chǎng)進(jìn)行救援,救援隊(duì)利用生命探測(cè)儀在地面A,B兩個(gè)探測(cè)點(diǎn)探測(cè)到地下C處有生命跡象.已知A,B兩點(diǎn)相距8米,探測(cè)線與地面的夾角分別是30°和45°,試確定生命所在點(diǎn)C的深度(結(jié)果保留根號(hào)).

27.如圖所示,一條自西向東的觀光大道l上有A、B兩個(gè)景點(diǎn),A、B相距2km,在A處測(cè)得另一景點(diǎn)C位于點(diǎn)A的北偏東60°方向,在B處測(cè)得景點(diǎn)C位于景點(diǎn)B的北偏東45°方向,求景點(diǎn)C到觀光大道l的距離.(結(jié)果精確到0.1km)28.如圖,圖①是某電腦液晶顯示器的側(cè)面圖,顯示屏AO可以繞點(diǎn)O旋轉(zhuǎn)一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(shí)(如圖②),人觀看屏幕最舒適.此時(shí)測(cè)得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長(zhǎng)度.(結(jié)果精確到1cm)(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,2≈1.414)

答案解析部分一、單選題1.【答案】B【考點(diǎn)】特殊角的三角函數(shù)值【解析】【解答】解:sin60°=32.

故答案為:B.

2.【答案】A【考點(diǎn)】特殊角的三角函數(shù)值【解析】【分析】根據(jù)特殊角的三角函數(shù)值,結(jié)合選項(xiàng)進(jìn)行判斷.

∵cos30°=32,

∴∠B=30°.

3.【答案】B【考點(diǎn)】勾股定理,銳角三角函數(shù)的定義【解析】【解答】解:在Rt△ABC中,由勾股定理得,BC=AB2-AC2=12,

∴sinA=BCAB4.【答案】B【考點(diǎn)】特殊角的三角函數(shù)值【解析】【分析】根據(jù)已知條件先判斷出三角形的形狀,再根據(jù)特殊角的三角函數(shù)值求解即可.

∵∠C=90°,AC=BC,

∴該三角形為等腰直角三角形,

∴sinA=sin45°=22.

5.【答案】A【考點(diǎn)】解直角三角形【解析】【分析】根據(jù)sinB等于∠B的對(duì)邊與斜邊之比可得AB的值.

【解答】∵sinB=35,AC=9,

∴ACAB=35,

解得AB=15.

6.【答案】B【考點(diǎn)】解直角三角形的應(yīng)用﹣坡度坡角問題【解析】【解答】解:∵坡度為1:7,

∴設(shè)坡角是α,則sinα=112+72=152=27.【答案】D【考點(diǎn)】計(jì)算器—三角函數(shù)【解析】【解答】解:由tan∠B=ACBC,得

AC=BC?tanB=5×tan26.

故答案為:D.

8.【答案】C【考點(diǎn)】特殊角的三角函數(shù)值【解析】【解答】解:由題意得,sinA﹣12=0,22﹣cosB=0,

即sinA=12,22=cosB,

解得,∠A=30°,∠B=45°,

∴∠C=180°﹣∠A﹣∠B=105°,9.【答案】D【考點(diǎn)】勾股定理,銳角三角函數(shù)的定義【解析】【分析】根據(jù)勾股定理求出c的長(zhǎng),再根據(jù)銳角三角函數(shù)的概念求出∠A的余弦值即可.

∵在△ABC中,∠C=90°,a=5,b=12,

∴c=52+122=13,

10.【答案】A【考點(diǎn)】解直角三角形,解直角三角形的應(yīng)用【解析】【解答】解:如圖,過(guò)點(diǎn)C作CG⊥EF于點(diǎn)G,延長(zhǎng)GH交AD于點(diǎn)H,過(guò)點(diǎn)H作HP⊥AB于點(diǎn)P,

則四邊形BCHP為矩形,

∴BC=PH=6,BP=CH,∠CHD=∠A=37°,

∴AP=PHtan∠A=60.75=8,

過(guò)點(diǎn)D作DQ⊥GH于點(diǎn)Q,

∴∠CDQ=∠CEG=30°,

∴CQ=12CD=2,DQ=CDcos∠CDQ=4×32=23,

∵QH=DQtan∠CHD=230.75=833,二、填空題11.【答案】atanα【考點(diǎn)】銳角三角函數(shù)的定義【解析】【解答】∵在直角△ABC中,∠B=90°,∠C=α,BC=a,∴tan∠C=ABBC∴AB=BC?tan∠C=a?tanα.故答案為:atanα.【分析】根據(jù)正切函數(shù)的定義進(jìn)行變形可得結(jié)果.12.【答案】34【考點(diǎn)】銳角三角函數(shù)的定義【解析】【解答】解:如圖:,

tanB=ADBD=34.

故答案是:34.13.【答案】403【考點(diǎn)】解直角三角形的應(yīng)用﹣仰角俯角問題【解析】【解答】由題意可得:∠BDA=45°,

則AB=AD=120m,

又∵∠CAD=30°,

∴在Rt△ADC中,

tan∠CDA=tan30°=CDAD=33,

解得:CD=403(m),

故答案為:403.14.【答案】4.8【考點(diǎn)】解直角三角形【解析】【解答】解:設(shè)菱形ABCD的邊長(zhǎng)為x,則AB=BC=x,又EC=2,所以BE=x﹣2,

因?yàn)锳E⊥BC于E,

所以在Rt△ABE中,cosB=x-2x,又cosB=45,

于是x-2x=45,

解得x=10,即AB=10.

所以易求BE=8,AE=6,

當(dāng)EP⊥AB時(shí),PE取得最小值.

故由三角形面積公式有:12AB?PE=115.【答案】2.5【考點(diǎn)】勾股定理,軸對(duì)稱的性質(zhì)【解析】【解答】∵AC=3,AB=5,∴BC=AB設(shè)BD=x,則CD=4﹣x,∴ED=4﹣x,∵AE=AC=3,∴BE=2,∵BE2+DE2=BD2,∴22+(4﹣x)2=x2,解得x=2.5,∴BD=2.5.故答案為:2.5.【分析】在Rt△ABC中應(yīng)用勾股定理可求得BC=4,設(shè)BD=x,則結(jié)合軸對(duì)稱的兩個(gè)三角形全等可用x表示出ED=4﹣x,在Rt△BED中應(yīng)用勾股定理即可得到關(guān)于x的方程,解方程即可求得x即BD的長(zhǎng).16.【答案】3.75【考點(diǎn)】翻折變換(折疊問題)【解析】【解答】解:設(shè)ED=x,則AE=6﹣x,∵四邊形ABCD為矩形,

∴AD∥BC,

∴∠EDB=∠DBC;

由題意得:∠EBD=∠DBC,

∴∠EDB=∠EBD,

∴EB=ED=x;

由勾股定理得:

BE2=AB2+AE2,

即x2=9+(6﹣x)2,

解得:x=3.75,

∴ED=3.75.

故答案為:3.75.

【分析】首先根據(jù)題意得到BE=DE,然后根據(jù)勾股定理得到關(guān)于線段AB、AE、BE的方程,解方程即可解決問題.17.【答案】1002【考點(diǎn)】解直角三角形的應(yīng)用﹣仰角俯角問題【解析】【解答】解:如圖,連接AN,

由題意知,BM⊥AA',BA=BA'

∴AN=A'N,

∴∠ANB=∠A'NB=45°,

∵∠AMB=22.5°,

∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,

∴AN=MN=200米,

在Rt△ABN中,∠ANB=45°,

∴AB=22AN=1002(米),

故答案為1002.

【分析】根據(jù)垂直平分線的性質(zhì),線段垂直平分線上的點(diǎn)與線段的兩個(gè)端點(diǎn)的距離相等,得到AN=A'N,再根據(jù)勾股定理求出AB的值.18.【答案】23【考點(diǎn)】銳角三角函數(shù)的定義【解析】【解答】解:∵在Rt△ABC中,∠ACB=90°,a=2,b=3,

∴tanA=ab=23.

故答案為23.

19.【答案】8【考點(diǎn)】全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),解直角三角形【解析】【解答】解:如圖,∵△ABC為等邊三角形,

∴∠B=60°,

過(guò)D點(diǎn)作DE′⊥AB,則BE′=12BD=2,

∴點(diǎn)E′與點(diǎn)E重合,

∴∠BDE=30°,DE=3BE=23,

∵△DPF為等邊三角形,

∴∠PDF=60°,DP=DF,

∴∠EDP+∠HDF=90°

∵∠HDF+∠DFH=90°,

∴∠EDP=∠DFH,

在△DPE和△FDH中,

{∠PED=∠DHF∠EDP=∠DFHDP=FD,

∴△DPE≌△FDH,

∴FH=DE=23,

∴點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑為一條線段,此線段到BC的距離為23,

當(dāng)點(diǎn)P在E點(diǎn)時(shí),作等邊三角形DEF1,∠BDF1=30°+60°=90°,則DF1⊥BC,

當(dāng)點(diǎn)P在A點(diǎn)時(shí),作等邊三角形DAF2,作F2Q⊥BC于Q,則△DF2Q≌△ADE,所以DQ=AE=10﹣2=8,

∴F1F2=DQ=8,

∴當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)為8.

【分析】過(guò)F點(diǎn)作FH⊥BC,過(guò)D點(diǎn)作DE′⊥AB,點(diǎn)E′與點(diǎn)E重合,根據(jù)已知條件可以求出DE的長(zhǎng),接著證明△DPE和△FDH,得出FH=DE,就可以判斷點(diǎn)F的運(yùn)動(dòng)軌跡是一條線段,此線段到BC的距離為就是FH的長(zhǎng),分別作出點(diǎn)P在E、A兩點(diǎn)時(shí)的等邊△DEF1,20.【答案】18+63【考點(diǎn)】解直角三角形的應(yīng)用﹣方向角問題【解析】【解答】如圖,過(guò)點(diǎn)P作PQ⊥AB交AB延長(zhǎng)線于點(diǎn)Q,過(guò)點(diǎn)M作MN⊥AB交AB延長(zhǎng)線于點(diǎn)N,

在直角△AQP中,∠PAQ=45°,則AQ=PQ=60×1.5+BQ=90+BQ(海里),

所以BQ=PQ-90.

在直角△BPQ中,∠BPQ=30°,則BQ=PQ?tan30°=33PQ(海里),

所以PQ-90=33PQ,

所以PQ=45(3+3)(海里)

所以MN=PQ=45(3+3)(海里)

在直角△BMN中,∠MBN=30°,

所以BM=2MN=90(3+3)(海里)

所以90(3+3)75=18+635三、解答題21.【答案】解:過(guò)點(diǎn)A作AH⊥BC于H,

∵S△ABC=27,

∴12×9×AH=27,

∴AH=6,

∵AB=10,

∴BH=AB2-AH2=【考點(diǎn)】三角形的面積,勾股定理,銳角三角函數(shù)的定義【解析】【分析】過(guò)點(diǎn)A作AH⊥BC于H,根據(jù)△ABC的面積為27可求出AH的長(zhǎng),在直角三角形ABH中用勾股定理求出BH的長(zhǎng),則tanB的值可求。22.【答案】解:設(shè)AC的長(zhǎng)為x,那么BC的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論