版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
串講07概率與統(tǒng)計(jì)
一、知識(shí)網(wǎng)絡(luò)
分類計(jì)數(shù)原理
分步計(jì)數(shù)原理
排列數(shù)
排列組合4
7組合數(shù)
二項(xiàng)展開式
L二項(xiàng)式定理,通項(xiàng)公式
統(tǒng)計(jì)與概率
二項(xiàng)式系數(shù)的性質(zhì)
,離散型隨機(jī)變量及其分布
隨機(jī)變量及其分布>?卜二項(xiàng)分布
?正態(tài)分布
用樣本估計(jì)整體
統(tǒng)計(jì)
一元線性回歸
二、??碱}型
加法原理離散型隨機(jī)變量
f-------------------
乘法原理二項(xiàng)分布
排列o常見考點(diǎn)。正態(tài)分布
組合、用樣本估計(jì)總體
二項(xiàng)式定理變量間的相關(guān)關(guān)系
三、知識(shí)梳理
1.計(jì)數(shù)原理
(1)分類加法計(jì)數(shù)原理
概念:完成一件事有〃類不同方案,在第1類方案中有班種不同的方法,在第2類方案中有牲
種不同的方法,…,在第〃類方案中有外種不同的方法,那么完成這件事共有
N二町+網(wǎng)+…+〃乙種不同的方法.
特征:①任何一類方案都能完成這件事;②各類方案之間相互獨(dú)立;③分類要做到“不重不漏”
(2)分步乘法計(jì)數(shù)原理
概念:完成一件事需要〃個(gè)步驟,做第1步有町種不同的方法,做第2步有外種不同的方法,…,
做第〃步有“種不同的方法,那么,完成這件事共有N=K…X/〃”種不同的方法
特征:①任何一步都不能單獨(dú)完成這件事;②各步之間相互依存;③分步要做到“步驟完整”
2.排列
(1)排列:一般地,從〃個(gè)不同元素中取出〃?(〃區(qū)〃)個(gè)元素,按照一定的順序排成一列,叫
做從〃個(gè)不同元素中取出,〃個(gè)元素的一個(gè)排列
(2)排列數(shù):從〃個(gè)不同元素中取出根(〃6〃)個(gè)元素的所有不同排列的個(gè)數(shù)叫做從〃個(gè)不同
元素中取出加個(gè)元素的排列數(shù),用符號(hào)A:表示
(3)排列數(shù)公式:A"'=/7(/2-1)(n-2)■??(/?-/7Z+1)=n'(N",且
3.組合
(1)組合:一般地,從〃個(gè)不同的元素中取出〃區(qū)〃)個(gè)元素合成一組,叫做從〃個(gè)不同元
素中取出m個(gè)元素的一個(gè)組合
(2)組合數(shù):從〃個(gè)不同元素中取出根(〃區(qū)〃)個(gè)元素的所有不同組合的個(gè)數(shù),叫做從〃個(gè)不
同元素中取出加個(gè)元素的組合數(shù),用符號(hào)表示
/八APIA將八teA:H(A?-1)(/?—2)???(?—w+1)n\/、r*口/、
(3)組合數(shù)公式:C=—=----------------------=-----(m,nwN,S.m<n)
〃A:ml初(〃一⑼!
(4)組合數(shù)的性質(zhì):(1)C;=C:-m;(2)C1=C;+C『
4.二項(xiàng)式定理
(1)二項(xiàng)式定理
概念:一般地,對(duì)于任意的正整數(shù)〃,
都有(〃+3"=C"++…+cy-V+--+c?"(〃wN)這個(gè)公式稱為二項(xiàng)式
定理,等號(hào)右邊的式了稱為(〃十))〃的二項(xiàng)展開式,(&十〃)”的二項(xiàng)展開式共有〃+1項(xiàng),其中各
項(xiàng)的系數(shù)C:(正{0,1,2,…,叫叫做二項(xiàng)式系數(shù),C”“A稱為二項(xiàng)展開式的第Z+1項(xiàng),又稱為
二求展開式的通項(xiàng)
(2)二項(xiàng)展開式的特征:
①二項(xiàng)展開式共有〃+1項(xiàng);
②二項(xiàng)式系數(shù)依次為組合數(shù)G;CC,…,£;,???,&;
③各項(xiàng)次數(shù)都等于二項(xiàng)式的基指數(shù)〃;
④字母〃的指數(shù)由〃開始按降幕排列到0,b的指數(shù)由0開始按升舞排列到〃
(3)二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)的區(qū)別:二項(xiàng)式系數(shù)為項(xiàng)的系數(shù)指該項(xiàng)中除字母外的部分
(4)二項(xiàng)式系數(shù)的性質(zhì)
對(duì)稱性:與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等
增減性:當(dāng)小時(shí),二項(xiàng)式系數(shù)是逐漸增大的,由對(duì)稱性知它的后半部分是逐漸減小的
2
最大值:當(dāng)〃是偶數(shù)時(shí),中間一項(xiàng)的二項(xiàng)式系數(shù)C:取得最大值;當(dāng)〃是奇數(shù)時(shí),中間兩項(xiàng)的二
n-1n+l
項(xiàng)式系數(shù)相等,且同時(shí)取得最大值
(5)二項(xiàng)式系數(shù)和:
①二項(xiàng)展開式中各二項(xiàng)式系數(shù)之和為2〃;
②在二項(xiàng)展開式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和與偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和相等且都等于.
5.離散型隨機(jī)變量
(1)離散型隨機(jī)變量的定義
如果對(duì)于隨機(jī)變量可能取的值,可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變
量。
(2)離散型隨機(jī)變量的分布列
設(shè)離散型隨機(jī)變量4所有可能取得的值為X1,X2,…,心,…Xn,若4取每一個(gè)值Xi(i=l,2,…,n)
的概率為p(g=W)=6,則稱表
??????
X1X2XiXn
PPlP2???Pi???Pn
為隨機(jī)變量4的概率分布,簡(jiǎn)稱4的分布列.該分布列具有如下性質(zhì):
①R20,i=1,2,…,n;
②P1+P2+…+P產(chǎn)1
(3)離散型隨機(jī)變量的分布列的求法
①要確定隨機(jī)變量J的可能取值有哪些.明確取每個(gè)值所表示的意義;
②分清概率類型,計(jì)算4取得每一個(gè)值時(shí)的概率;
③列表對(duì)應(yīng),給出分布列,并用分布列的性質(zhì)驗(yàn)證.
6.二項(xiàng)分布
(1)二項(xiàng)分布的定義
在一次隨機(jī)試驗(yàn)中,事件A可能發(fā)生也可能不發(fā)生,在八次獨(dú)立重復(fù)試驗(yàn)中事件A發(fā)生的次數(shù)
4是一個(gè)離散型隨機(jī)變量.如果在一次試驗(yàn)中事件A發(fā)生的概率是〃,則此事件不發(fā)生的概
率為4=1-〃,那么在〃次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生k次的概率是
*=k)=2伏)=C:pkqi,(攵=).
于是得到離散型隨機(jī)變量4的概率分布如下:
01???k???n
Pc>VcA*??????C:p"q。
由于表中第二行恰好是二項(xiàng)展開式
①+〃)“=C;P%"++…+C:〃,尸+…+C:pZ0中各對(duì)應(yīng)項(xiàng)的值,所以稱這樣的
隨機(jī)變量4服從參數(shù)為〃,〃的二項(xiàng)分布,記作。?伏〃,〃).
(2)如何求有關(guān)的二項(xiàng)分布
①分清楚在n次獨(dú)立重復(fù)試驗(yàn)中,共進(jìn)行了多少次重復(fù)試驗(yàn),即先確定n的值,然后確定在一
次試驗(yàn)中某事件A發(fā)生的概率是多少,即確定p的值,最后再確定某事件A恰好發(fā)生了多少次,
即確定k的值;
②準(zhǔn)確算出每一種情況卜,某事件A發(fā)生的概率;
③用表格形式列出隨機(jī)變量的分布列.
7.正態(tài)分布
(1)正態(tài)變量的概率密度函數(shù)
正態(tài)變量的概率密度函數(shù)表達(dá)式為:0)=7亞『6紡2(xwR),(b>0,Yov〃<M)
其中X是隨機(jī)變量的取值;□為正態(tài)變量的期望;。是正態(tài)變量的標(biāo)準(zhǔn)差.
(2)正態(tài)分布
①正態(tài)分布的定義
如果對(duì)于任何實(shí)數(shù)。力(?!戳﹄S機(jī)變量X滿足:尸(。<XW6)=f公,則稱隨機(jī)變量X
服從正態(tài)分布,記為xN(A,£)
②正態(tài)分布的期望與方差
若X2,6),則X的期望與方差分別為:EX=〃,DX=a2
(3)正態(tài)曲線
1
如果隨機(jī)變量X的概率密度函數(shù)為/(x)=-f^eMR),其中實(shí)數(shù)〃和。為參數(shù)
42m
(<T>0,-ox//<+a)),則稱函數(shù)/a)的圖象為正態(tài)分布密度曲線,簡(jiǎn)稱正態(tài)曲線.
(4)正態(tài)曲線的性質(zhì)
①曲線位于x軸上方,與x軸不相交;
②曲線是單峰的,它關(guān)于直線x=〃對(duì)稱;
③曲線在x=〃時(shí)達(dá)到峰值
J27rb
④當(dāng)時(shí),曲線上升;當(dāng)時(shí),曲線下降.并且當(dāng)曲線向左、右兩邊無限延伸時(shí),以x
軸為漸近線,向它無限靠近;
⑤曲線與X軸之間的面積為1;
⑥”決定曲線的位置和對(duì)稱性
當(dāng)。一定時(shí),曲線的對(duì)稱軸位置由〃確定;如下圖所示,曲線隨著〃的變化而沿X軸平移;
⑦。確定曲線的形狀
當(dāng),〃一定時(shí),曲線的形狀由。確定。。越小,曲線越“高瘦”,表示總體的分布越集中;。越
大,曲線越“矮胖”,表示總體的分布越分散。如下圖所示.
8.油樣方式
(1)簡(jiǎn)單隨機(jī)抽樣
放回簡(jiǎn)單隨機(jī)抽樣不放回簡(jiǎn)單隨機(jī)抽樣
一般地,設(shè)一個(gè)總體含有N(N為正整數(shù))個(gè)個(gè)體,從中②逐個(gè)抽取n(1Wn<N)個(gè)個(gè)體作為
樣本
如果抽取是放回的,且每次抽取時(shí)總體內(nèi)如果抽取是不放回的,且每次抽取時(shí)總體
的各個(gè)個(gè)體被抽到的概率都③相等,我們內(nèi)④未進(jìn)入樣本的各個(gè)個(gè)體被抽到的概率
把這樣的抽樣方法叫做放回簡(jiǎn)單隨機(jī)抽都相等,我們把這樣的抽樣方法叫做不放
樣同簡(jiǎn)單隨機(jī)抽樣
放回簡(jiǎn)單隨機(jī)抽樣和不放回簡(jiǎn)單隨機(jī)抽樣統(tǒng)稱為簡(jiǎn)單隨機(jī)抽樣.通過簡(jiǎn)單隨機(jī)抽樣獲
得的樣本稱為簡(jiǎn)單隨機(jī)樣本
(2)分層抽樣
①分層隨機(jī)抽樣的定義
一般地,按一個(gè)或多個(gè)變量把總體劃分成若干個(gè)子總體,每個(gè)個(gè)體屬于且僅屬于一個(gè)子總體,在
每個(gè)子總體中獨(dú)立地進(jìn)行簡(jiǎn)單隨機(jī)抽樣,再把所有子總體中抽取的樣本合在一起作為總樣本,
這樣的抽樣方法稱為分層隨機(jī)抽樣,每一個(gè)子總體稱為層.
②比例分配
在分層隨機(jī)抽樣中,如果每層樣木量都與層的大小成比例,那么稱這種樣木量的分配方式為比
例分配.
9.變量的相關(guān)關(guān)系
(1)相關(guān)關(guān)系的定義
兩個(gè)變量有關(guān)系,但又沒有確切到可由其中的一個(gè)去精確地決定另一個(gè)的程度,這種關(guān)系稱為
相關(guān)關(guān)系.與函數(shù)關(guān)系不同,相關(guān)關(guān)系是一種非確定性關(guān)系.
(2)散點(diǎn)圖
①散點(diǎn)圖
成對(duì)樣本數(shù)據(jù)都可用直角坐標(biāo)系中的點(diǎn)表示出來,由這些點(diǎn)組成的統(tǒng)計(jì)圖叫做散點(diǎn)圖.
②正相關(guān)和負(fù)相關(guān)
如果從整體上看,當(dāng)一個(gè)變量的值增加時(shí),另一個(gè)變量的相應(yīng)值也呈現(xiàn)增加的趨勢(shì),我們就稱
這兩個(gè)變量正相關(guān);如果當(dāng)一個(gè)變量的值增加時(shí),另一個(gè)變量的相應(yīng)值呈現(xiàn)減少的趨勢(shì),則稱
這兩個(gè)變量負(fù)相關(guān).
斗r
0正相關(guān)*0負(fù)相關(guān)”
(3)線性相關(guān)
一股地,如果兩個(gè)變量的取值呈現(xiàn)正相關(guān)或負(fù)相關(guān),而且散點(diǎn)落在一條直線附近,則稱這兩個(gè)
變量線性相關(guān).
四、??碱}型探究
考點(diǎn)一加法原理
例1.一個(gè)二層書架,分別放置語文類讀物7本,政治類讀物8本,英語類讀物9本,每本圖
書各不相同,從中取出1本,則不同的取法共有()
A.3種B.504種C.24種D.12種
例2.每天從甲地到乙地的飛機(jī)有5班,高鐵有10趟,動(dòng)車有6趟,公共汽車有12班.某人
某天從甲地前往乙地,則其出行方案共有()
A.22種B.33種C.300種D.3600種
【變式探究】如圖,已知每條線路僅含一條通路,當(dāng)一條電路從M處到N處接通時(shí),不同的
線路可以有()
A.5條B.6條C.7條D.8條
考點(diǎn)二乘法原理
例3.中國(guó)燈籠又統(tǒng)稱為燈彩,主要有宮燈、紗燈、吊燈等種類.現(xiàn)有4名學(xué)生,每人從宮燈、
紗燈、吊燈中選購1種,則不同的選購方式有()
A.3,種B.43種C.3x2x1種D.4x3x2種
例4.有3位高三學(xué)生參加4所重點(diǎn)院校的自主招生考試,每人參加且只能參加一所學(xué)校的考
試,則不同的考試方法種數(shù)為.
【變式探究】集合A有m個(gè)元素,集合B有n個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法
的種數(shù)是.
考點(diǎn)三排列原理
例5.求A;+A:的值為()
A.12B.18C.24D.30
例6.為貫徹文明校園,東湖中學(xué)每周安排5名學(xué)生志愿者參加文明監(jiān)督鹵工作,若每周只值
3天班,每班1人,每人每周最多值一班,則不同的排班種類為()
A.12B.45C.60D.90
【變式探究】用數(shù)字0、1、2、3、4、5組成沒有重復(fù)數(shù)字的四位數(shù),若將組成的不重復(fù)的四
位數(shù)按從小到大的順序排成一個(gè)數(shù)列,則第85個(gè)數(shù)字為()
A.2301B.2304C.2305D.2310
考點(diǎn)四組合原理
例7.計(jì)算C"C:+C;+C:=()
A.34B.35C.36D.37
例8.已知C;6=C『2,則心.
【變式探究】若C°=C:,則g的值為.
考點(diǎn)五二項(xiàng)式定理
例9.在⑵-少的展開式/中含項(xiàng)的系數(shù)是()
A.-192B.-160C.240D.60
例10.若(1-2外5=4+4/+42/++%/,則生+/=(
A.100B.110C.120D.130
【變式探究】若(4+蛾]展開式中只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,則〃=()
A.9B.10C.11D.12
考點(diǎn)六離散型隨機(jī)變量
例1L設(shè)離散型隨機(jī)變量4的分布列如下表所示:
—0123
1
\_1\_2
1To
P55
10
則下列各式正確的是()
24
A.P(^<3)=-B.^>1)=-
C.P(2<g<4)=:D.贈(zèng)<05)=0
例12.已知離散型隨機(jī)變量X的分布列為
X123
31
a
lo
P5
則;的數(shù)學(xué)期望石(x)=()
A.=3B.2C.51D.3
22
【變式探究】下表是離散型隨機(jī)變量X的分布列,則常數(shù)。的值是()
考點(diǎn)七二項(xiàng)分布
例13.電燈泡使用時(shí)數(shù)在1000小時(shí)以上的概率為0.8,則3個(gè)燈泡在使用1000小時(shí)內(nèi)恰好壞
了一個(gè)的概率為()
A.0.384B.1C.0.128D.0.104
例14.若隨機(jī)變量X服從二項(xiàng)分布46,;),則P(X=3)的值為()
【變式探究】設(shè)隨機(jī)變量4*2,p),若。(421)=[,則夕的值為,
考點(diǎn)八正態(tài)分布
例15.對(duì)力,少兩地國(guó)企員工上班遲到情況進(jìn)行統(tǒng)計(jì),可知兩地國(guó)企員工的上班遲到時(shí)間均符
合正態(tài)分布,其中4地員工的上班遲到時(shí)間為4(單位:min),X:N(2,4),對(duì)應(yīng)的曲線為C,
8地員工的上班遲到時(shí)間為】,(單位:min),Y/vkl、,對(duì)應(yīng)的曲線為G,則下列圖象正確
/
的是()
a
-ku-UL
O\o\
例16.若隨機(jī)變量X~N(30,/),jaP(30<X<40)=03,則P(X<20)=()
A.0.2B.0.3C.0.7D.0.8
【變式探究】若隨機(jī)變量X服從正態(tài)分布N(2Q2),P(X>4)=0.45,則P(XN0)=()
A.0.45B.0.55C.0.1D.0.9
例17.王老師對(duì)本班4()名學(xué)生報(bào)名參與課外興趣小組(每位學(xué)生限報(bào)一個(gè)項(xiàng)目)的情況進(jìn)行
了統(tǒng)計(jì),列出如下的統(tǒng)計(jì)表,則本班報(bào)名參加科技小組的人數(shù)是()
組數(shù)學(xué)小寫作小體育小音樂小科技小
別組組組組組
頻
().10.2().3().150.25
率
A.10人B.9人C.8人D.7人
例18.在某知識(shí)競(jìng)賽中,共
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)家事業(yè)單位招聘2023中國(guó)(教育部)留學(xué)服務(wù)中心招聘擬錄用人員(非事業(yè)編制)(二)筆試歷年參考題庫典型考點(diǎn)附帶答案詳解(3卷合一)
- 金融行業(yè)面試技巧經(jīng)典問題與答案指南
- 培訓(xùn)師團(tuán)隊(duì)成員考核評(píng)價(jià)標(biāo)準(zhǔn)
- 酒店廚師面試題及答案
- 空調(diào)維修技師技能考試題含答案
- 2025年生態(tài)旅游投資分析可行性研究報(bào)告
- 2025年社區(qū)醫(yī)療衛(wèi)生服務(wù)項(xiàng)目可行性研究報(bào)告
- 2025年智能電表推廣應(yīng)用項(xiàng)目可行性研究報(bào)告
- 2025年社區(qū)共享資源平臺(tái)開發(fā)項(xiàng)目可行性研究報(bào)告
- 2026年重慶電信職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫參考答案詳解
- 利用EXCEL畫風(fēng)機(jī)特性曲線-模版
- 基層銷售人員入職培訓(xùn)課程完整版課件
- 2023年郴州職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫及答案解析word版
- 西南大學(xué)PPT 04 實(shí)用版答辯模板
- D500-D505 2016年合訂本防雷與接地圖集
- 顱腦損傷的重癥監(jiān)護(hù)
- 《史記》上冊(cè)注音版
- JJF 1985-2022直流電焊機(jī)焊接電源校準(zhǔn)規(guī)范
- GB/T 19867.2-2008氣焊焊接工藝規(guī)程
- 國(guó)家開放大學(xué)《刑法學(xué)(1)》形成性考核作業(yè)1-4參考答案
- 商戶類型POS機(jī)代碼
評(píng)論
0/150
提交評(píng)論