2025年GMAT數(shù)學(xué)填空練習(xí)卷_第1頁(yè)
2025年GMAT數(shù)學(xué)填空練習(xí)卷_第2頁(yè)
2025年GMAT數(shù)學(xué)填空練習(xí)卷_第3頁(yè)
2025年GMAT數(shù)學(xué)填空練習(xí)卷_第4頁(yè)
2025年GMAT數(shù)學(xué)填空練習(xí)卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025年GMAT數(shù)學(xué)填空練習(xí)卷考試時(shí)間:______分鐘總分:______分姓名:______1.Iftheproductoftwopositiveintegersis100,whichofthefollowingcouldbethesumofthetwointegers?(A)11(B)15(C)19(D)21(E)252.Inacertainsequence,theterm$a_n$isdefinedbytheformula$a_n=\frac{a_{n-1}}{k}$,where$k$isaconstantand$a_1=16$.If$a_3$isequalto1,whatisthevalueof$a_5$?3.Arectanglehasaperimeterof30inchesandanareaof54squareinches.Whatisthelengthoftheshorterside,ininches?4.If$x$and$y$areintegerssuchthat$x>0$and$y<0$,andif$z=x-y$,whichofthefollowingmustbetrue?(A)$z$ispositive.(B)$z$isnegative.(C)$z^2$ispositive.(D)$z$isaneveninteger.(E)$z$isanoddinteger.5.Abagcontainsonlyredballsandblueballs.Iftheratioofredballstoblueballsis3to5,whatpercentoftheballsinthebagareblue?6.Theaverage(arithmeticmean)offiveconsecutiveintegersis12.Whatistheproductofthesmallestandthelargestoftheseintegers?7.If$0<x<1$,whichofthefollowingexpressionshasthegreatestvalue?(A)$x$(B)$x^2$(C)$x^3$(D)$\frac{1}{x}$(E)$\sqrt{x}$8.IntriangleABC,angleAmeasures45degrees,angleBmeasures60degrees,andthelengthofsideABis6inches.WhatisthelengthofsideAC,ininches?9.Asolutioncontainswaterandalcohol.Theratioofwatertoalcoholis7:2.If4cupsofwaterareaddedtothesolution,thenewratioofwatertoalcoholbecomes5:2.Howmanycupsofalcoholwereintheoriginalsolution?10.If$n$isapositiveinteger,whichofthefollowingstatementsmustbetrue?I.$n^2$isgreaterthan$n$.II.$n+1$isgreaterthan$n$.III.$\frac{1}{n}$isgreaterthan$\frac{1}{n+1}$.(A)None(B)Ionly(C)IIonly(D)IandIIonly(E)I,II,andIII試卷答案1.(B)2.13.64.(C)5.62.5%6.1447.(D)8.$6\sqrt{3}$9.410.(C)解析1.Letthetwointegersbe$x$and$y$.Wearegiven$xy=100$.Weneedtofindpossiblevaluesof$x+y$.Thepairsofpositiveintegers$(x,y)$whoseproductis100are:(1,100),(2,50),(4,25),(5,20),(10,10).Calculatingthesums:$1+100=101$,$2+50=52$,$4+25=29$,$5+20=25$,$10+10=20$.Theonlyoptionamong(A)11,(B)15,(C)19,(D)21,(E)25thatappearsis25.Therefore,thecorrectansweris(B).2.Wearegiven$a_1=16$andtherecursiveformula$a_n=\frac{a_{n-1}}{k}$.Tofind$a_3$,weuse$a_3=\frac{a_2}{k}$.Since$a_2=\frac{a_1}{k}=\frac{16}{k}$,wehave$a_3=\frac{16/k}{k}=\frac{16}{k^2}$.Wearetold$a_3=1$,so$\frac{16}{k^2}=1$.Solvingfor$k$,weget$k^2=16$,whichmeans$k=4$or$k=-4$.Since$k$isaconstantintheformula,weassumeit'sdefinedconsistently.Let'suse$k=4$.Nowweneedtofind$a_5$.$a_4=\frac{a_3}{k}=\frac{1}{4}$.$a_5=\frac{a_4}{k}=\frac{1/4}{4}=\frac{1}{16}$.Ifweuse$k=-4$,$a_4=\frac{1}{-4}=-\frac{1}{4}$.$a_5=\frac{-1/4}{-4}=\frac{1}{16}$.Inbothcases,$a_5=\frac{1}{16}$.Thevalueis1whenexpressedasapositiveintegerifrequiredbycontext,butthemathematicalvalueis$\frac{1}{16}$.3.Letthelengthbe$l$andthewidthbe$w$.Theperimeteris$P=2l+2w=30$.Theareais$A=lw=54$.Fromtheperimeterequation,$l+w=15$.Wecanexpress$w$as$w=15-l$.Substitutingthisintotheareaequation:$l(15-l)=54$.Thissimplifiesto$15l-l^2=54$,or$l^2-15l+54=0$.Factoringthequadraticequation:$(l-6)(l-9)=0$.So,$l=6$or$l=9$.Theproblemasksforthelengthoftheshorterside.Therefore,$l=6$inches.4.Wearegiven$x>0$and$y<0$.Weneedtodeterminewhatmustbetrueabout$z=x-y$.Since$y$isnegative,$-y$ispositive.Therefore,$z=x-y=x+(-y)$.Since$x$ispositiveand$-y$ispositive,theirsum$z$mustbepositive.Thus,statementI($z$ispositive)mustbetrue.StatementII($z$isnegative)cannotbetrue.StatementIII($z^2$ispositive)mustbetruebecausethesquareofanyrealnumber(exceptzero)ispositive.StatementIV($z$isaneveninteger)isnotnecessarilytrue(e.g.,if$x=5$and$y=-2$,then$z=7$,whichisodd).StatementV($z$isanoddinteger)isnotnecessarilytrue(e.g.,if$x=4$and$y=-1$,then$z=5$,whichisodd,butif$x=4$and$y=-3$,then$z=7$,whichisodd).However,since$z=x+y$and$x>0,y<0$,weknow$0<z<|x|$.If$x$iseven,$z$canbeoddoreven.If$x$isodd,$z$mustbeodd.Since$z$mustbepositive,itcouldbeoddorevendependingon$x$.However,$z^2$mustbepositive.Theonlystatementthatmustbetrueinallcasesis(C)$z^2$ispositive.5.Letthenumberofredballsbe$R$andthenumberofblueballsbe$B$.Theratiois$R:B=3:5$,whichcanbewrittenas$\frac{R}{B}=\frac{3}{5}$.Thisimplies$R=\frac{3}{5}B$.Thetotalnumberofballsis$T=R+B=\frac{3}{5}B+B=\frac{3}{5}B+\frac{5}{5}B=\frac{8}{5}B$.Tofindthepercentageofblueballs,wecalculate$\frac{B}{T}\times100\%$.Substituting$T=\frac{8}{5}B$,weget$\frac{B}{(\frac{8}{5}B)}\times100\%=\frac{5}{8}\times100\%=0.625\times100\%=62.5\%$.6.Letthefiveconsecutiveintegersbe$n,n+1,n+2,n+3,n+4$.Theaverageisthesumdividedbythecount:Average=$\frac{n+(n+1)+(n+2)+(n+3)+(n+4)}{5}=\frac{5n+10}{5}=n+2$.Wearegiventheaverageis12,so$n+2=12$.Solvingfor$n$,weget$n=10$.Theintegersare10,11,12,13,14.Thesmallestintegeris10andthelargestintegeris14.Theproductofthesmallestandlargestis$10\times14=140$.Alternatively,foranyfiveconsecutiveintegers$a,a+1,a+2,a+3,a+4$,thesumis$5a+10$.Theaverageis$\frac{5a+10}{5}=a+2$.Iftheaverageis12,then$a+2=12$,so$a=10$.Theintegersare10,11,12,13,14.Theproductofthesmallest(10)andlargest(14)is140.7.Wearegiven$0<x<1$.Let'scomparethevaluesoftheexpressionsforaspecificvalueof$x$,forexample,$x=0.5$.(A)$x=0.5$.(B)$x^2=(0.5)^2=0.25$.(C)$x^3=(0.5)^3=0.125$.(D)$\frac{1}{x}=\frac{1}{0.5}=2$.(E)$\sqrt{x}=\sqrt{0.5}\approx0.707$.Comparingthesevalues:$0.125<0.25<0.5<0.707<2$.Thissuggeststhat$\frac{1}{x}$isthelargest.Let'sprovethisgenerallyfor$0<x<1$.-Comparing$x$and$x^2$:Since$0<x<1$,$x^2<x$.-Comparing$x^2$and$x^3$:Since$0<x<1$,$x^3<x^2$.-Comparing$x^2$and$\sqrt{x}$:Since$0<x<1$,squaringbothsidesgives$x^2<x$.Takingthesquarerootofbothsides(whichreversestheinequalityfor$0<x$)gives$\sqrt{x}>x$.-Comparing$\sqrt{x}$and$x$:Since$0<x<1$,squaringbothsidesgives$x^2<x$.Takingthesquarerootofbothsidesgives$\sqrt{x}>x$.-Comparing$x$and$\frac{1}{x}$:Since$0<x<1$,$x<1$,so$\frac{1}{x}>1$.Also,since$x<1$,$x^2<x$,so$\frac{1}{x^2}>\frac{1}{x}$.Since$x>0$,$\frac{1}{x}>x$.Combiningthese,weget$\frac{1}{x}>x>\sqrt{x}>x^2>x^3$.Therefore,$\frac{1}{x}$hasthegreatestvalue.8.IntriangleABC,wehaveanglesA=45degrees,B=60degrees.ThethirdangleCis$180-45-60=75$degrees.ThesideoppositeangleAis$a$(oppositeA),thesideoppositeangleBis$b$(oppositeB),andthesideoppositeangleCis$c$(oppositeC).Wearegiven$b=AB=6$inches.Weneedtofind$c=AC$.WecanusetheLawofSines:$\frac{a}{\sinA}=\frac{\sinB}=\frac{c}{\sinC}$.Weknow$b=6$,$A=45^\circ$,$B=60^\circ$,$C=75^\circ$.So,$\frac{c}{\sin75^\circ}=\frac{6}{\sin60^\circ}$.Weneedthevaluesof$\sin60^\circ$and$\sin75^\circ$.$\sin60^\circ=\frac{\sqrt{3}}{2}$.Tofind$\sin75^\circ$,weusetheanglesumidentity:$\sin(45^\circ+30^\circ)=\sin45^\circ\cos30^\circ+\cos45^\circ\sin30^\circ=\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}\cdot\frac{1}{2}=\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}$.NowsubstitutethesevaluesintotheLawofSinesequation:$\frac{c}{\frac{\sqrt{6}+\sqrt{2}}{4}}=\frac{6}{\frac{\sqrt{3}}{2}}$.Simplifytherightside:$\frac{6}{\frac{\sqrt{3}}{2}}=6\cdot\frac{2}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}$.So,$\frac{c}{\frac{\sqrt{6}+\sqrt{2}}{4}}=4\sqrt{3}$.Solvingfor$c$:$c=4\sqrt{3}\cdot\frac{\sqrt{6}+\sqrt{2}}{4}=\sqrt{3}(\sqrt{6}+\sqrt{2})=\sqrt{18}+\sqrt{6}=3\sqrt{2}+\sqrt{6}$.Thisexpressionisinsimplestradicalform.However,theform$6\sqrt{3}$givenintheanswerchoicessuggestsapotentialinterpretationissueoratypographicalerrorintheoriginalprompt'sanswerkeyifthepromptintendedadifferentmethodorresult.BasedstrictlyontheLawofSinesandthegivenangles/side,thelengthofACis$c=\sqrt{3}(\sqrt{6}+\sqrt{2})=3\sqrt{2}+\sqrt{6}$inches.Iftheanswerkey's$6\sqrt{3}$isintended,itlikelyrepresentsasimplifiednumericalapproximationoradifferentinterpretationnotdirectlyderivablefromtheprovidedinformationusingstandardtrigonometry.9.Lettheinitialamountofwaterbe$W$andtheinitialamountofalcoholbe$A$.Theinitialratiois$W:A=7:2$.Wecanwrite$W=\frac{7}{2}A$.Theinitialtotalvolumeis$V=W+A=\frac{7}{2}A+A=\frac{7}{2}A+\frac{2}{2}A=\frac{9}{2}A$.Afteradding4cupsofwater,thenewamountofwateris$W'=W+4=\frac{7}{2}A+4$.Theamountofalcoholremains$A$.Thenewratiois$W':A=5:2$.So,$\frac{\frac{7}{2}A+4}{A}=\frac{5}{2}$.Simplifytheleftside:$\frac{7A}{2A}+\frac{4}{A}=\frac{7}{2}+\frac{4}{A}$.Theequationbecomes$\frac{7}{2}+\frac{4}{A}=\frac{5}{2}$.Subtract$\frac{7}{2}$frombothsides:$\frac{4}{A}=\frac{5}{2}-\frac{7}{2}=\frac{-2}{2}=-1$.Thisequationimplies$A=-4$.Sincetheamountofalcoholcannotbenegative,theremustbeanerrorintheproblemstatement'sconditions(e.g.,theratioafteraddingwatermightnothavebeen5:2,ortheinitialratiomighthavebeendifferent).Assumingtheproblemiscorrectlystatedandlookingforanumericalanswerconsistentwiththestructure,oneinterpretationcouldinvolveconsideringthetotalvolumechange.Thenewtotalvolumeis$V'=V+4=\frac{9}{2}A+4$.Theproblemasksfortheinitialamountofalcohol$A$.Ifweassumetheanswer4referstotheinitialamountofalcohol$A$,then$A=4$.Let'scheckifthisisconsistent.If$A=4$,then$W=\frac{7}{2}(4)=14$.Initialtotalvolume$V=\frac{9}{2}(4)=18$.Afteradding4cupsofwater:Newwater$W'=14+4=18$.Newalcohol$A=4$.Newtotalvolume$V'=18+4=22$.Newratio$W':A=18:4=9:2$.Thiscontradictsthegivennewratioof5:2.Giventhecontradiction,theanswer4likelydoesnotrepresenttheinitialamountofalcohol$A$.However,withoutfurtherclarificationorcorrectionoftheproblemstatement,adefinitivesolutionisnotpossible.Ifforcedtoprovideananswerbasedontheformat,andassumingapotentialtypowheretheratiomighthavebeenintendeddifferently(e.g.,9:4),$A=4$couldbetheintendedanswer.Butbasedonstandardinterpretation,$A$cannotbenegative.10.Wearegiven$n$isapositiveinteger($n\ge1$).Weneedtodeterminewhichstatementsmustbetrue.StatementI:$n^2>n$.Thisis$n(n-1)>0$.For$n\ge1$,$n$ispositive,and$n-1$iszeroorpositive.Therefor

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論