蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題真題經(jīng)典套題及解析_第1頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題真題經(jīng)典套題及解析_第2頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題真題經(jīng)典套題及解析_第3頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題真題經(jīng)典套題及解析_第4頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題真題經(jīng)典套題及解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題真題經(jīng)典套題及解析一、解答題1.在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.(1)如圖①,當(dāng)AE⊥BC時(shí),寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數(shù);②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說(shuō)明理由.2.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動(dòng)AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請(qǐng)說(shuō)明理由.3.己知:如圖①,直線直線,垂足為,點(diǎn)在射線上,點(diǎn)在射線上(、不與點(diǎn)重合),點(diǎn)在射線上且,過(guò)點(diǎn)作直線.點(diǎn)在點(diǎn)的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說(shuō)明;(3)如圖③,若,點(diǎn)在射線上運(yùn)動(dòng),的平分線交的延長(zhǎng)線于點(diǎn),在點(diǎn)運(yùn)動(dòng)過(guò)程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.4.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.5.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過(guò)D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說(shuō)明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接寫出比值.6.如圖1,在△ABC中,∠B=90°,分別作其內(nèi)角∠ACB與外角∠DAC的平分線,且兩條角平分線所在的直線交于點(diǎn)E.(1)∠E=°;(2)分別作∠EAB與∠ECB的平分線,且兩條角平分線交于點(diǎn)F.①依題意在圖1中補(bǔ)全圖形;②求∠AFC的度數(shù);(3)在(2)的條件下,射線FM在∠AFC的內(nèi)部且∠AFM=∠AFC,設(shè)EC與AB的交點(diǎn)為H,射線HN在∠AHC的內(nèi)部且∠AHN=∠AHC,射線HN與FM交于點(diǎn)P,若∠FAH,∠FPH和∠FCH滿足的數(shù)量關(guān)系為∠FCH=m∠FAH+n∠FPH,請(qǐng)直接寫出m,n的值.7.已知△ABC的面積是60,請(qǐng)完成下列問(wèn)題:(1)如圖1,若AD是△ABC的BC邊上的中線,則△ABD的面積△ACD的面積.(填“>”“<”或“=”)(2)如圖2,若CD、BE分別是△ABC的AB、AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=y(tǒng)由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為:,解得,通過(guò)解這個(gè)方程組可得四邊形ADOE的面積為.(3)如圖3,AD:DB=1:3,CE:AE=1:2,請(qǐng)你計(jì)算四邊形ADOE的面積,并說(shuō)明理由.8.直線與直線垂直相交于點(diǎn)O,點(diǎn)A在直線上運(yùn)動(dòng),點(diǎn)B在直線上運(yùn)動(dòng).(1)如圖1,已知分別是和角的平分線,點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明變化的情況;若不發(fā)生變化,試求出的大?。?)如圖2,已知不平行分別是和的角平分線,又分別是和的角平分線,點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出的度數(shù).(3)如圖3,延長(zhǎng)至G,已知的角平分線與的角平分線及反向延長(zhǎng)線相交于,在中,如果有一個(gè)角是另一個(gè)角的3倍,則的度數(shù)為____(直接寫答案)9.如圖,直線MN∥GH,直線l1分別交直線MN、GH于A、B兩點(diǎn),直線l2分別交直線MN、GH于C、D兩點(diǎn),且直線l1、l2交于點(diǎn)E,點(diǎn)P是直線l2上不同于C、D、E點(diǎn)的動(dòng)點(diǎn).(1)如圖①,當(dāng)點(diǎn)P在線段CE上時(shí),請(qǐng)直寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系:;(2)如圖②,當(dāng)點(diǎn)P在線段DE上時(shí),(1)中的∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系還成立嗎?如果成立,請(qǐng)說(shuō)明成立的理由;如果不成立,請(qǐng)寫出這三個(gè)角之間的數(shù)量關(guān)系,并說(shuō)明理由.(3)如果點(diǎn)P在直線l2上且在C、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,請(qǐng)直接寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系.10.如圖1,在中,平分,平分.(1)若,則的度數(shù)為______;(2)若,直線經(jīng)過(guò)點(diǎn).①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);②如圖3,若繞點(diǎn)旋轉(zhuǎn),分別交線段于點(diǎn),試問(wèn)在旋轉(zhuǎn)過(guò)程中的度數(shù)是否會(huì)發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請(qǐng)說(shuō)明理由:③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點(diǎn),與的延長(zhǎng)線交于點(diǎn),請(qǐng)直接寫出與的關(guān)系(用含的代數(shù)式表示).【參考答案】一、解答題1.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,再由根據(jù)角的和差計(jì)算即可得∠C的度數(shù),進(jìn)而得∠B的度數(shù).②根據(jù)翻折的性質(zhì)和三角形外角及三角形內(nèi)角和定理,用含x的代數(shù)式表示出∠FDE、∠DFE的度數(shù),分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質(zhì)可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當(dāng)∠FDE=∠DFE時(shí),,解得:;當(dāng)∠FDE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);當(dāng)∠DFE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個(gè)角相等.且.【點(diǎn)睛】本題考查圖形的翻折、三角形內(nèi)角和定理、平行線的判定及其性質(zhì)、三角形外角的性質(zhì)、等角代換,解題的關(guān)鍵是熟知圖形翻折的性質(zhì)及綜合運(yùn)用所學(xué)知識(shí).2.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動(dòng)AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.3.(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.詳解:(1)S△BCD=CD?OC=×3×2=3.(2)如圖②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直線MN⊥直線PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分線,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如圖③,∵直線l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分線,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.點(diǎn)睛:本題主要考查垂線,角平分線和三角形面積,解題的關(guān)鍵是找準(zhǔn)相等的角求解.4.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過(guò)O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.5.(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.6.(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根據(jù)角平分線的定義可得∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,根據(jù)已知可推導(dǎo)得出x﹣y=45,再解析:(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根據(jù)角平分線的定義可得∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,根據(jù)已知可推導(dǎo)得出x﹣y=45,再根據(jù)三角形外角的性質(zhì)即可求得答案;(2)①根據(jù)角平分線的尺規(guī)作圖的方法作出圖形即可;②如圖2,由CF平分∠ECB可得∠ECF=y,再根據(jù)∠E+∠EAF=∠F+∠ECF以及∠E+∠EAB=∠B+∠ECB,可推導(dǎo)得出45°+=∠F+y,由此即可求得答案;(3)如圖3,設(shè)∠FAH=α,根據(jù)AF平分∠EAB可得∠FAH=∠EAF=α,根據(jù)已知可推導(dǎo)得出∠FCH=α﹣22.5①,α+22.5=30+∠FCH+∠FPH②,由此可得∠FPH=,再根據(jù)∠FCH=m∠FAH+n∠FPH,即可求得答案.【詳解】(1)如圖1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案為45;(2)①如圖2所示,②如圖2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如圖3,設(shè)∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、基本作圖——角平分線等,熟練掌握三角形內(nèi)角和定理以及三角形外角的性質(zhì)、結(jié)合圖形進(jìn)行求解是關(guān)鍵.7.(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計(jì)算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,解析:(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計(jì)算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=2y,利用已知條件列出方程組,解方程組即可得出結(jié)論.【詳解】解:(1)如圖1,過(guò)A作AH⊥BC于H,∵AD是△ABC的BC邊上的中線,∴BD=CD,∴,,∴S△ABD=S△ACD,故答案為:=;(2)解方程組得,∴S△AOD=S△BOD=10,∴S四邊形ADOB=S△AOD+S△AOE=10+10=20,故答案為:,20;(3)如圖3,連接AO,∵AD:DB=1:3,∴S△ADO=S△BDO,∵CE:AE=1:2,∴S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=3x,S△AEO=2y,由題意得:S△ABE=S△ABC=40,S△ADC=S△ABC=15,可列方程組為:,解得:,∴S四邊形ADOE=S△ADO+S△AEO=x+2y=13.【點(diǎn)睛】本題是一道四邊形的綜合題,主要考查了三角形的面積公式,等底同高的三角形面積相等,高相同的三角形的面積比等于底的比,二元一次方程組的解法.本題是閱讀型題目,準(zhǔn)確理解題干中的方法并正確應(yīng)用是解題的關(guān)鍵.8.(1)不發(fā)生變化,∠AEB=135°;(2)不發(fā)生變化,∠CED=67.5°;(3)60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BA解析:(1)不發(fā)生變化,∠AEB=135°;(2)不發(fā)生變化,∠CED=67.5°;(3)60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BAO和∠ABO的角平分線得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)延長(zhǎng)AD、BC交于點(diǎn)F,根據(jù)直線MN與直線PQ垂直相交于O可得出∠AOB=90°,進(jìn)而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分別是∠BAP和∠ABM的角平分線,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形內(nèi)角和定理可知∠F=45°,再根據(jù)DE、CE分別是∠ADC和∠BCD的角平分線可知∠CDE+∠DCE=112.5°,進(jìn)而得出結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的3倍分四種情況進(jìn)行分類討論.【詳解】解:(1)∠AEB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分別是∠BAO和∠ABO角的平分線,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不變.延長(zhǎng)AD、BC交于點(diǎn)F.∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分別是∠BAP和∠ABM的角平分線,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分別是∠ADC和∠BCD的角平分線,∴∠CDE+∠DCE=112.5°,∴∠CED=67.5°;(3)∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=90°.在△AEF中,∵有一個(gè)角是另一個(gè)角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍棄);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍棄).∴∠ABO為60°或45°.故答案為:60°或45°.【點(diǎn)睛】本題考查的是平行線的判定和性質(zhì),三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.9.(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過(guò)P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過(guò)P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解析:(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過(guò)P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過(guò)P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(3)根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】解:(1)如圖①,過(guò)P點(diǎn)作PQ∥GH,∵M(jìn)N∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案為:∠APB=∠NAP+∠HBP;(2)如圖②,過(guò)P點(diǎn)作PQ∥GH,∵M(jìn)N∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如備用圖,∵M(jìn)N∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論