版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
電磁場(chǎng)與電磁波Electromagnetic
Fieldsand
WavesChapter2ElectrostaticFields2.1ElectrostaticFieldsinvacuum2.1.1ElectricFieldIntensity(2)Coulomb'slaw(1)Whatiselectrostaticfield?(3)Twotypesof"points"inthefield(4)Theelectricfieldintensitygeneratedbyapointcharge(5)Theelectricfieldintensitywhichisgeneratedbyadistributedcharge2.1.1ElectricFieldIntensity(1)Whatiselectrostaticfield?
Thechargesurroundsaspecialformofmattercalledanelectricfield.
Theelectricfieldactsasamechanicalforceonthechargeinit.①Theelectricfieldcausedbyachargeatrestwithrespecttotheobserverandwhosechargedoesnotchangewithtimeiselectrostaticfield.②Thebasicfieldquantityofelectrostaticfieldiselectricfieldintensity
.electrostaticfield:Theelectricfieldgeneratedbyastationarycharge.Importantcharacteristic:Theelectricfieldexertsaforceonchargeslocatedwithinit.2.1.1ElectricFieldIntensity
Forcebetweentwo-pointchargesq1andq2inaninfinitevacuum:(2)Coulomb’sLawThedielectricconstantofvacuum2.1.1ElectricFieldIntensityElectricfieldforceobeysthesuperpositiontheoremqq1q2q3q4q5q6q72.1.1ElectricFieldIntensity(3)twotypesof"points":fieldpointandsourcepointThesourcepoint:thelocationofthefieldsource(suchaspointcharge)orThefieldpoint:wherethefieldquantityneedstobedeterminedorThedistancevectorfromthesourcetothefieldpoint:Iftherearemultiplesourcepoints,thedistancevectorfromtheoriginofcoordinatestothesourcepointisTheunitvectorisHasnpointcharges
respectivelylocatedinTheforceactonpointcharge
locatedin(4)ElectricFieldIntensityofapointchargeandasystemofpointchargesWhatifthechargeiscontinuouslydistributed?TheelectricfieldintensityofthepointchargeElectricFieldIntensity——Testcharge
2.1.1ElectricFieldIntensity(5)
ElectricFieldIntensityofdistributedchargeThevolumechargedensity:Thesurfacechargedensity:Thelinechargedensity:Theelementcharge
:2.1.1ElectricFieldIntensityWecandivideanydistributedchargeintomanyelementcharges,andtreateachelementchargeasapointcharge.Inaninfinitevacuum,accordingtothecalculationformulaoffieldintensitygeneratedbypointcharge,theelementfieldintensityatthefieldpoint(r)generatedbytheelementcharge
dq
at(r’)isByapplyingthesuperpositionprinciple,thefieldintensityatthefieldpoint(r)canbeobtainedbyintegratingallthefieldsourcecharges(5)
ElectricFieldIntensityofdistributedchargeElectricfieldgeneratedbychargesinasmallvolumeelementSurfacedistributedchargeLine-distributedchargeElectricfieldintensitygeneratedbyuniformlyvolume-distributedcharge(5)
ElectricFieldIntensityofdistributedchargeElectricfieldintensityofseveraltypicalchargedistributions(infinitelength)(finitelength)均勻帶電直線(xiàn)段均勻帶電圓環(huán)auniformlychargedstraightlinesegment:theaxisofauniformlychargedcircularring:Example:Findtheelectricfieldcausedbyaninfinitelylonglinechargeuniformlydistributedwithlinedensity
invacuum,asshowninthefigure.Whenthedisplacementofq0isdl,theworkdonebytheelectricfieldforceis
ThevoltagefromPtoQis1.Definitionofvoltage2.1.2ElectricPotentialIfq0ismovedfrompointPtopointQ,thetotalworkdonebytheelectricfieldforceisThevoltagebetweentwopointsisequaltotheworkdonebytheelectricfieldforcewhenaunitpositivechargeismovedbetweentwopoints.Thevoltagebetweenanytwopointsinanelectrostaticfieldisequaltothelineintegraloftheelectricfieldintensity.Ifthechargemoves
alonganyclosedpath
intheelectrostaticfield,theworkdonebytheelectricfieldforceisequaltozero.2.Theelectrostaticfieldisaconservationfield2.1.2ElectricPotentialThelooprouteintegraloftheelectricfieldintensityvector
ETheelectrostaticfieldisaconservativefield.3.Definitionandcalculationofpotential2.1.2ElectricPotentialThepotentialofapointinanelectricfieldisdefinedastheworkdonebytheforceoftheelectricfieldtomoveaunitpositivechargefromthatpointtoapointofzeropotential(thereferencepoint).IfpointQistakenasthepotentialreferencepointThepotentialatthereferencepointisobviouslyzero.Thepotentialofapointatinfinityisusuallychosentobezero2.1.2ElectricPotential
ThepotentialofapointchargeqattheoriginofthecoordinatesinavacuumatadistancerIfthefieldsourcehasnpointcharges,thepotentialatthefieldpoint(r)canbeobtainedbyapplyingthesuperpositionprincipleWherethefieldsourcecontainsvariousdistributedcharges3.Definitionandcalculationofpotential2.1.3TherelationshipbetweenelectricfieldintensityandpotentialThecurlofthegradientofanyscalarisequaltozero1.FromEto2.FromtoEBecauseof
,applythecurltheoremtheelectrostaticfieldisanon-rotationalfieldTheelectricfieldintensityisequaltothenegativegradientofpotentialSolution:Example2-2Figureshowsthelinechargeofacircularringwithradiusa(linechargedensity
)onthexOyplaneinvacuum.TrytodeterminethepotentialandelectricfieldintensityatpointPontheaxiszawayfromthecenterofthecircle.Accordingtotheanalysis,thefieldintensityhasonlyzcomponentExample2-3Figureshowsauniformlychargeddiskwithradiusaandsurfacechargedensity
.Findtheelectricfieldintensityontheaxisofthedisk.ThepotentialgeneratedbythechargeontheentirediskatpointPisSolution:Takearingwithradiusrandwidthdr
onthedisk,andthepotentialgeneratedbytheelementcharge
ontheringatpointPontheaxisisTheobtainableelectricfieldintensityisApplythegradientexpressionincylindricalcoordinatesystemIftheradiusofthedisctendstoinfinityExample
Findthepotentialofauniformlychargedwirewithalengthof2Landachargedensityof
.xyzL-L
Solution:Usingcylindricalcoordinates,letthelinechargecoincidewiththez-axis,withthemidpointlocatedatthecoordinateorigin.Duetoaxialsymmetry,theelectricpotentialisindependentofz.When
Theaboveexpressionbecomesinfinitebecausethechargeisnotdistributedwithinafinitearea,andthepotentialreferencepointischosenataninfinitelydistantpoint.Anarbitraryconstantcanbeaddedtotheaboveformula,resultinginSelectingthepointwhereρ=aasthepotentialreferencepoint,wehave①
Electricfieldline(Eline)E
lineisacurveonwhichthedirectionofthetangentlineateachpointisthesameasthedirectionofthefieldintensityatthatpoint.IfdlrepresentstheelementsegmentonE
line,theE=kdl,namelyEx=kdx,Ey=kdy,
Ez=kdz,
andthedifferentialequationoflineinrectangularcoordinatesystemis:2.1.4Thedistributionpatternofthefield②EquipotentialsurfaceandequipotentiallineTheequationoftheequipotentialsurfaceisthefollowingTheequipotentialsurfaceandthefieldlineareperpendiculareverywhere.Thedensertheequipotentialdistribution,thegreaterthefieldintensity.等位線(xiàn)的切線(xiàn)等位線(xiàn)PαEP‘dlExample2-4DeterminetheequationofElineinpointchargefield.zxyP(x,y,z)orqSolution:Supposepointchargeislocatedattheoriginofcoordinates,thenFromdifferentialequation
get2.2ElectrostaticFieldsindielectrics2.2.1Polarizationofdielectrics
Theresponseofamediumtoanelectromagneticfieldcanbedividedintothreecases:
polarization,magnetization,andconduction.
Theparametersthatdescribetheelectromagneticpropertiesofamediumare:
dielectricconstant,magneticpermeability,andconductivity.1.Propertiesofconductorsinelectrostaticequilibrium(1)Thefieldintensityintheconductorshouldbezero;(2)Conductorsareequipotential,andthepotentialsateachpointareequal;(3)Thedirectionofthefieldintensityatanypointontheconductorsurfacemustbeperpendiculartotheconductorsurface;(4)Iftheconductorischarged,thechargecanonlybedistributedonthesurface.2.2.1Polarizationofdielectrics2.dielectricsTheparticlesinsideadielectriccanmoveslightlyundertheactionofanexternalelectricfield,butcannotleavetherangeofmolecules.Thechargecarriedbytheparticlesinsidethedielectriciscalledboundcharge.Anidealmedium,alsocalledaninsulator,isamediumwithzeroelectricalconductivity.
2.2.1Polarizationofdielectrics2.dielectricsThedielectriclosesitsdielectricpropertyandbecomesaconductorundertheactionofastrongenoughelectricfield,whichiscalleddielectricbreakdown.Thecorrespondingvoltageiscalledbreakdownvoltage,andthefieldintensityatthetimeofbreakdowniscalledbreakdownfieldintensity.2.2.1Polarizationofdielectrics3.ElectricdipoleElectricdipolereferstotwoelectricchargeswithoppositesignsandequalvaluesthatareveryclosetoeachother.Electricdipolemoment:Thedirectionofpisfromthenegativechargetothepositivecharge.Anelectricdipolecausesanelectricfieldaroundit,anditisalsosubjecttoaforceinanexternalelectricfield.2.2.1Polarizationofdielectrics4.PolarizationofdielectricUndertheactionofanappliedelectricfield,theboundchargeinthemediumshifts.Thephenomenoniscalledpolarization.Insidethepolarizedmediumappearanumberofelectricdipolesarrangedinroughlythesamedirection,theseelectricdipoleswillproduceanelectricfield.2.2.1Polarizationofdielectrics1)Undertheinfluenceofanexternalelectricfield,adielectricmaterialwillundergopolarization.2)Thedegreeofpolarizationisdeterminedbythemagnitudeoftheelectricdipolemomentwithinthemedium.4.PolarizationofdielectricTheelectricfieldinapolarizedmediumisthecompositeoftheexternallyappliedelectricfieldandtheelectricfieldoftheelectricdipole.2.2.1PolarizationofdielectricsUniformmedium:Thecharacteristicsofthemediumdonotchangewiththechangeofspatialcoordinates.Isotropicmedium:Thecharacteristicsofthemediumdonotchangewiththechangeofthedirectionoftheelectricfieldquantity,otherwiseitisanisotropicmedium,suchasdiode.Linearmedium:theparametersofthemediumdonotchangewiththechangeoftheelectricfieldquantity.4.PolarizationofdielectricCommontermsformediaareasfollows.2.2.1Polarizationofdielectrics5.PolarizationintensityDefinition:thevectorsumoftheelectricdipolemomentintheunitvolumeafterpolarization
Theexperimentalresultsshowthatthepolarizationintensityisproportionaltotheappliedfieldintensityinisotropiclinearmedia
istheelectricpolarizationofthedielectric,apositiverealnumber.2.2.1Polarizationofdielectrics
Afterdielectricpolarization,theremaybeanetresidualchargeinside,whichiscalledthepolarizationvolumecharge6.Furtherdiscussiononpolarizationphenomenon
Afterdielectricpolarization,netresidualchargesmayalsoappearonthedielectricinterface,resultinginpolarizationsurfacecharges2.2.1PolarizationofdielectricsTherelationshipbetweenthebodychargedensity,surfacechargedensityofpolarizationchargeandpolarizationintensity:WhereistheunitvectorinthedirectionoftheouternormalofthemediumsurfaceBasedonthedivergencetheorem2.2.1Polarizationofdielectrics6.Furtherdiscussiononpolarizationphenomenon1.Electricdisplacement
Question:Whenthereisamediumpresentinspace,thepossiblepresenceofpolarizedchargeswithinitwillgenerateanadditionalelectricfield,whichwillaffecttheoveralldistributionoftheelectricfield.So:whencalculatingthetotalelectricfield,isitnecessarytofirstcalculatetheelectricfieldgeneratedbythepolarizedcharges?2.2.2ElectrastaticFieldsindielectrics1.Electricdisplacement
2.2.2ElectrastaticFieldsindielectricsinavacuum:inamedium: Electricdisplacement
:Usingthedivergencetheoremandconsideringunit:C/m2thefluxofelectricdisplacementthroughanyclosedsurfaceinthedielectricisequaltothealgebraicsumoffreechargessurroundedbytheclosedsurface.then
2.2.2ElectrastaticFieldsindielectricsInisotropiclinearmedia:2.2.2ElectrastaticFieldsindielectricstheelectricpolarizability,apositiverealnumber1.ConditionsforusingGauss'slawtocalculateelectricfieldintensityinasimpleanddirectmannerWhenEisuniformlydistributedonS,orwhentheintegralresultisknown!Whatproblempossessessuchcharacteristics?
Aproblemwithsymmetry!2.2.3ApplicationsofGauss’sFluxLawConditions:canbemovedoutsidetheintegralsignoftheGauss’slawforsolvingUnderwhatcircumstances
canbemovedoutsidetheintegralsign?
Sphericalsymmetrydistribution:2.2.3ApplicationsofGauss’sFluxLawAxisymmetricdistribution:2.2.3ApplicationsofGauss’sFluxLaw
Infiniteplanecharge:(a)(b)2.2.3ApplicationsofGauss’sFluxLawSolution:(1)Accordingtothepropertiesofconductorsinelectrostaticfields,thedistributionofchargescanbeobtained.(2)Tofindtheelectricfieldintensity,solvefromtheinsideout.q1-q1q1+q2Example2-5Itisknownthattherearetwoconcentricmetalsphericalshellsinvacuum.TheinnersphericalshellhasradiusR1andchargeq1,andtheoutersphericalshellhasradiusR2andthicknessandchargeq2.Findtheelectricfieldintensityandpotentialeverywhereinthefield.q1-q1q1+q2Tofindthefieldintensityatpointr,applyGauss'sfluxtheoremtodifferentregions,andconstructaGaussianclosedsurfaceasaspherewithradiusrandconcentricwiththeconductor.(3)Tocalculatethepotential,solvefromtheoutsideinward.Weshouldfirstcalculatethepotentialoutsidetheoutersphericalshell,withtheinfinitedistanceasthereferencepoint.Sincetheconductorisanequipotentialbody,thepotentialofeverypartoftheconductorwithintheoutersphericalshellisExample2-6ItisknownthatthereisavolumechargeinavacuumuniformlydistributedinasphereofradiusRwithvolumechargedensityρ.Findtheelectricfieldintensityandpotentialinsideandoutsidethesphere.Solution:(1)Findtheelectricfieldintensity.AccordingtoGauss'sfluxtheoremIfallthecharge
inthesphereisexpressed,and
(2)
FindtheelectricfieldpotentialTofindthepotentialofanypointoutsidethesphere,withinfinityasthereferencepointTakethepotentialofthespheresufaceasthereferencepotential,thepotentialofanypointinthesphereis2.3FundamentalequationsandboundaryconditionsofelectrostaticfieldsDifferentialform:Constitutiverelation:1.ThefundamentalequationsIntegralform:2.3.1Thefundamentalequations1.Theboundaryconditionoftheelectricfieldintensity:Conclusion:thetangentialcomponentoftheelectricfieldintensityisequaltobothsidesoftheinterfaceofthetwodielectric,orthetangentialcomponentofthefieldintensityiscontinuous.2.3.3Boundaryconditionsofelectrostaticfields2.Theboundaryconditionoftheelectricdisplacement:Conclusion:thenormalcomponentoftheelectricdisplacement
attheinterfaceofthetwodielectricisequal,orthenormalcomponentoftheelectricdisplacement
iscontinuous.2.3.3Boundaryconditionsofelectrostaticfields3.Therefractionlaw:介質(zhì)2介質(zhì)12.3.3BoundaryconditionsofelectrostaticfieldsLetthefirstmediumbetheconductorandthesecondmediumbethefreespace.Consideringthatthefieldintensityandelectricdisplacementinsidetheconductor
bezero.2.3.4BoundaryconditionsattheinterfacebetweenconductoranddielectricThechargecanonlybedistributedontheconductorsurface(theinterfacebetweenthetwomedia)whentheconductorischarged.Whereisthechargesurfacedensityoftheconductorsurface2.3.4BoundaryconditionsattheinterfacebetweenconductoranddielectricInstructions:Inadielectric,thefieldintensityandelectricdisplacementadjacenttotheconductorsurfaceareperpendiculartotheconductorsurface.
Thevalueoftheelectricdisplacementisequaltothesurfacechargedensityofthepoint.2.4Poisson’s
equation,Laplace’s
equation
anduniqueness
theoremIntheactiveregion:ForuniformmediumthePoissonequationoftheelectrostaticfieldInthepassiveregion:theLaplaceequationoftheelectrostaticfield2.4.1Poisson’s
equationandLaplace’s
equationExample2-8
Foranaircapacitorwithparallelplates,thevoltageU0
betweenthetwoplatesandthechargewithabodydensityof
isevenlydistributedbetweenthetwoplates.Theedgeeffectisignoredandtheelectricfielddistributioniscalculated.Solution:A
coordinatesystemisestablished,potentialφisonlyafunctionofxcoordinate.Poissonequationissimplifiedfromthesecondorderpartialdifferentialequationtothefollowingtotaldifferentialequation:IntegratetheabovetotaldifferentialequationtoobtainthegeneralsolutionoftheequatioApplythegivenboundaryvalue:Wecanfindtheintegralconstant:Wegetthedistributionfunctionofthepotential
φFindthenegativegradientofpotentialtoobtaintheelectricfieldintensity
φGivenavalueof
or
ontheboundarysurfaceSofthedomainV,thePoissonequationorLaplaceequationhasauniquevalueinthedomainV.2.4.2Uniqueness
theoremsignificantimportanceTheconditionsfortheuniquenessofsolutionstotheelectrostaticfieldboundaryvalueproblemItprovidesatheoreticalbasisforvarioussolvingmethodsofstaticfieldboundaryvalueproblemsItprovidesacriterionforthecorrectnessofthesolutionThestatementoftheuniquenesstheoremThethreeinvariantconditionssatisfiedbytheuniquenesstheoremaresummarizedbyPoissonequationasfollows.Thechargeanditsdistributionareinvariantinthesolvingdomain.Thedielectricinthesolvingdomainisinvariant.Theboundaryconditionsattheinterfacedonotchange.IfPoissonequationisdeterministic,thethreeinvariantsaresatisfied.Thesolutionoftheequationisuniquenomatterwhatmethodisusedtosolveit,andtheobtainedsolutionisvalideverywhereinthefieldAccordingtotheuniquenesstheorem,youcansolveaprobleminanyoneofmoreconvenientways,aslongasthegivenconditionsaresatisfied,thesolutioniscorrect.2.4.2Uniqueness
theorem2.5MethodofImages1.TheimageofapointchargeagainstaninfinitegroundedconductorplaneTheresultiscorrectbecauseitsatisfiestheboundaryconditionsoftheoriginalproblem.2.5.1ImageofthegroundingconductorplaneimagechargePotentialfunctionWhen
z=0,有效區(qū)域qqPotentialfunctionintheupperhalfspace(z≥0)qTheinducedchargedensityontheconductorplaneisThetotalinducedchargeontheconductorplaneisExample2-9Findtheinducedchargedistributiononthegroundcausedbyapointchargeqintheairwithdistancedfromtheground.TheinducedsurfacechargedensityisSolution:Thedirectionofthefieldintensityistowardstheground,anditsmagnitudeisthefollowing:Byusingtheareaintegralofthesurfacechargedensity,thetotalinducedchargeonthewholegroundcanbeobtainedfrom2.5.2TheimageofapointchargeattheinterfaceoftwoinfinitedielectricplaneFigure1Characteristics:Undertheinfluenceoftheelectricfieldofapointcharge,thedielectricbecomespolarized,resultingintheformationofapolarizedchargedistributiononthedielectricinterface.Atthispoint,theelectricfieldatanypointinspaceisjointlygeneratedbythepointchargeandthepolarizedcharges.Question:AsshowninFigure1,theinterfacebetweentwodifferentdielectricswithdielectricconstantsε1andε2isaninfinitelylargeplane.Thereisapointchargeqindielectric1,locatedatadistancehfromtheinterfaceplane.2.5.2TheimageofapointchargeattheinterfaceoftwoinfinitedielectricplaneFigure2Analysismethod:Whencalculatingthepotentialindielectric1,theimagechargeslocatedindielectric2areusedtoreplacethepolarizedchargesontheinterface,andtheentirespaceisconsideredtobefilledwithauniformdielectricwithadielectricconstantofε1Thepotentialinmedium1is
Whencalculatingthepotentialindielectric2,theimagechargeslocatedindielectric1areusedtoreplacethepolarizedchargesontheinterface,andtheentirespaceisregardedasfilledwithauniformdielectricwithadielectricconstantofε2.Thepotentialindielectric2isFigure32.5.2TheimageofapointchargeattheinterfaceoftwoinfinitedielectricplanegetDescription:Foraninfinitelylonglinecharge(perunitlength)locatedneartheinterfaceofaninfinitelylargeflatsurfacemediumandparalleltotheinterface,itsimagechargeisUtilizetheboundaryconditionssatisfiedbythepotential2.5.2Theimageofapointchargeattheinterfaceoftwoinfinitedielectricplane2.6CapacitanceandPartialCapacitance2.6CapacitanceandpartialcapacitanceCapacitorsplayanimportantroleintuning,by-pass,couplingandfilteringcircuits.Theycanbeusedintuningcircuitsoftransistorradios,couplingcircuitsandby-passcircuitsofcolorTVsets,etc.isdefinedastheratioofthecharge
qitcarriestoitspotential
,thatis
Capacitanceofanisolatedconductor:
Thecapacitanceofacapacitorcomposedoftwoconductorswithequalbutoppositecharges(±q)is
Thecapacitanceofacapacitorisrelatedtotheshape,size,mutualpositionandmediumbetweenconductors,buthasnothingtodowiththeelectrificationofconductors.2.6.1CapacitanceSolutio:Assumesthattheinnerconductorchargeforq,andevenlydistributedinthesurfaceoftheconductorball,ThevoltagebetweentwoconcentricconductorspheresisThecapacitanceofthesphericalcapacitorisWhen
Example2-10AsshowninFigure,thesphericalradiusoftheinnerconductorisa,andtheinnerradiusoftheoutershellisb.Thecapacitanceofthesphericalcapacitoriscalculated.capacitanceofanisolatedconductorballExample
Considertheparalleldouble-conductortransmissionline,
theradiusoftheconductorisa,andtheaxialdistancebetweenthetwoconductorsisD,whereD>>a.Calculatethecapacitanceperunitlengthofthetransmissionline.Solution:ApplyingGauss'stheoremandthesuperpositionprinciple,wecanobtainPotentialdifferencebetweentwoconductorsThecapacitanceperunitlengthis2.6.1CapacitanceExample:Theradiusoftheinnerconductorofacoaxiallineisa,theradiusoftheouterconductorisb,andtheuniformmediumfilledbetweentheinnerandouterconductorshasadielectricconstantofε.Calculatethecapacitanceperunitlengthofthecoaxialline.PotentialdifferencebetweeninnerandouterconductorsSolution:ApplyingGauss'stheorem,wecanobtaintheelectricfieldintensityatanypointbetweentheinnerandouterconductorsasTherefore,thecapacitanceperunitlengthofthecoaxiallineiscoaxialline2.6.1Capacitance
thevoltagebetweenanytwoconductorsisnotonlyaffectedbyitsowncharge,butalsobythechargeonotherconductors.Theconceptofcapacitanceneedstobeextendedandtheconceptofpartialcapacitanceisintroduced.InasystemcomposedofNconductors,duetothelinearrelationshipbetweenpotentialandthechargecarriedbyeachconductor,thepotentialofeachconductoris式中:——selfpotentialcoefficient——mutualpotentialcoefficient(1)potentialcoefficient2.6.2PartialCapacitanceIfthepotentialofeachconductorisknown,theelectricquantityofeachconductorcanbeexpressedasWhere:——Selfinductioncoefficient——Mutualinductioncoefficient(2)inductioncoefficient2.6.2PartialCapacitanceExpresstheelectricquantityofeachconductorasWhere:(3)partialcapacitance——Partialcapacitancebetweenconductoriandconductorj——Thepartialcapacitancebetweenconductoriandtheground2.6.2PartialCapacitance2.7Electrostaticenergyandelectrostaticforce2.7靜電能量與靜電力
Thefieldenergyisequaltothetotalworkdonebytheexternalpowersourceduringtheestablishmentofthiselectricfield。
Theenergyofanelectrostaticfieldoriginatesfromtheenergyprovidedbyexternalsourcesduringtheprocessofestablishingachargesystem.
Themostfundamentalcharacteristicofanelectrostaticfieldisitsforceoncharges,indicatingthattheelectrostaticfieldpossessesenergy.
Duringthechargingprocess,theexternalpowersourcemustovercometheinteractionforcebetweenchargesandperformwork.
Thesystemischargedfromzero,andthefinalchargeisqandthepotentialis
.Atacertainpointduringthechargingprocess,thechargeisαqandthepotentialisα
.(0≤α≤1)
Whenαincreasesto(α+dα),theworkdonebytheexternalpowersourceis:α
(qdα).Integratingαfrom0to1,weobtainthetotalworkdonebytheexternalpowersource2.7.1Therelationshipbetweenelectrostaticenergyandpotential
Accordingtothelawofconservationofenergy,thisworkisequivalenttotheelectricfieldenergyWepossessedbyachargedbodywithachargeofq,thatisForavolumedistributionofchargewithachargedensityρ,theelectricfieldenergypossessedbythechargeρdVwithinavolumeelementdVis2.7.1TherelationshipbetweenelectrostaticenergyandpotentialTheelectricfieldenergyofavolume-distributedchargesisForsurface-distributedchargesForachargedsystemcomposedofmultipleconductor
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年松滋市第二人民醫(yī)院招聘?jìng)淇碱}庫(kù)帶答案詳解
- 2025年高職市場(chǎng)營(yíng)銷(xiāo)(網(wǎng)絡(luò)實(shí)操技術(shù))試題及答案
- 2025年中職服裝設(shè)計(jì)與工藝(服裝裁剪)試題及答案
- 2025年大學(xué)第二學(xué)年(網(wǎng)絡(luò)工程)網(wǎng)絡(luò)協(xié)議分析試題及答案
- 2025年大學(xué)大二(藥學(xué))藥物分析階段測(cè)試題及答案
- 2025年中職電磁輻射檢驗(yàn)檢測(cè)技術(shù)(電磁輻射檢驗(yàn)基礎(chǔ))試題及答案
- 2025年中職計(jì)算機(jī)系統(tǒng)維護(hù)(系統(tǒng)維護(hù)應(yīng)用)試題及答案
- 2025年高職導(dǎo)游服務(wù)類(lèi)(導(dǎo)游操作規(guī)范)試題及答案
- 2025年大學(xué)水利水電工程(水土保持學(xué))試題及答案
- 2025年大學(xué)通識(shí)選修(西方哲學(xué)原著選讀)試題及答案
- 電吹管保養(yǎng)維護(hù)知識(shí)培訓(xùn)課件
- 2.3 第2課時(shí) 中國(guó)第一大河-長(zhǎng)江 導(dǎo)學(xué)案(含答案)湘教版(2024)地理八年級(jí)上冊(cè)
- 醫(yī)院一站式服務(wù)
- 去極端化教育課件
- 成長(zhǎng)故事九年級(jí)作文(10篇)
- 2025年居間合伙人居間收益分配合同范本
- DB37∕T 4559-2022 長(zhǎng)期護(hù)理保險(xiǎn)定點(diǎn)護(hù)理服務(wù)機(jī)構(gòu)護(hù)理服務(wù)與管理評(píng)價(jià)規(guī)范
- 水利資料培訓(xùn)課件
- 公廁保潔作業(yè)管理制度
- 企業(yè)新媒體KOS矩陣研究報(bào)告
- 葫蘆灸課件教學(xué)課件
評(píng)論
0/150
提交評(píng)論