Electromagnetic Fields and Waves(電磁場(chǎng)與電磁波)課件Chapter 2 Electrostatic Fields_第1頁(yè)
Electromagnetic Fields and Waves(電磁場(chǎng)與電磁波)課件Chapter 2 Electrostatic Fields_第2頁(yè)
Electromagnetic Fields and Waves(電磁場(chǎng)與電磁波)課件Chapter 2 Electrostatic Fields_第3頁(yè)
Electromagnetic Fields and Waves(電磁場(chǎng)與電磁波)課件Chapter 2 Electrostatic Fields_第4頁(yè)
Electromagnetic Fields and Waves(電磁場(chǎng)與電磁波)課件Chapter 2 Electrostatic Fields_第5頁(yè)
已閱讀5頁(yè),還剩96頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

電磁場(chǎng)與電磁波Electromagnetic

Fieldsand

WavesChapter2ElectrostaticFields2.1ElectrostaticFieldsinvacuum2.1.1ElectricFieldIntensity(2)Coulomb'slaw(1)Whatiselectrostaticfield?(3)Twotypesof"points"inthefield(4)Theelectricfieldintensitygeneratedbyapointcharge(5)Theelectricfieldintensitywhichisgeneratedbyadistributedcharge2.1.1ElectricFieldIntensity(1)Whatiselectrostaticfield?

Thechargesurroundsaspecialformofmattercalledanelectricfield.

Theelectricfieldactsasamechanicalforceonthechargeinit.①Theelectricfieldcausedbyachargeatrestwithrespecttotheobserverandwhosechargedoesnotchangewithtimeiselectrostaticfield.②Thebasicfieldquantityofelectrostaticfieldiselectricfieldintensity

.electrostaticfield:Theelectricfieldgeneratedbyastationarycharge.Importantcharacteristic:Theelectricfieldexertsaforceonchargeslocatedwithinit.2.1.1ElectricFieldIntensity

Forcebetweentwo-pointchargesq1andq2inaninfinitevacuum:(2)Coulomb’sLawThedielectricconstantofvacuum2.1.1ElectricFieldIntensityElectricfieldforceobeysthesuperpositiontheoremqq1q2q3q4q5q6q72.1.1ElectricFieldIntensity(3)twotypesof"points":fieldpointandsourcepointThesourcepoint:thelocationofthefieldsource(suchaspointcharge)orThefieldpoint:wherethefieldquantityneedstobedeterminedorThedistancevectorfromthesourcetothefieldpoint:Iftherearemultiplesourcepoints,thedistancevectorfromtheoriginofcoordinatestothesourcepointisTheunitvectorisHasnpointcharges

respectivelylocatedinTheforceactonpointcharge

locatedin(4)ElectricFieldIntensityofapointchargeandasystemofpointchargesWhatifthechargeiscontinuouslydistributed?TheelectricfieldintensityofthepointchargeElectricFieldIntensity——Testcharge

2.1.1ElectricFieldIntensity(5)

ElectricFieldIntensityofdistributedchargeThevolumechargedensity:Thesurfacechargedensity:Thelinechargedensity:Theelementcharge

:2.1.1ElectricFieldIntensityWecandivideanydistributedchargeintomanyelementcharges,andtreateachelementchargeasapointcharge.Inaninfinitevacuum,accordingtothecalculationformulaoffieldintensitygeneratedbypointcharge,theelementfieldintensityatthefieldpoint(r)generatedbytheelementcharge

dq

at(r’)isByapplyingthesuperpositionprinciple,thefieldintensityatthefieldpoint(r)canbeobtainedbyintegratingallthefieldsourcecharges(5)

ElectricFieldIntensityofdistributedchargeElectricfieldgeneratedbychargesinasmallvolumeelementSurfacedistributedchargeLine-distributedchargeElectricfieldintensitygeneratedbyuniformlyvolume-distributedcharge(5)

ElectricFieldIntensityofdistributedchargeElectricfieldintensityofseveraltypicalchargedistributions(infinitelength)(finitelength)均勻帶電直線(xiàn)段均勻帶電圓環(huán)auniformlychargedstraightlinesegment:theaxisofauniformlychargedcircularring:Example:Findtheelectricfieldcausedbyaninfinitelylonglinechargeuniformlydistributedwithlinedensity

invacuum,asshowninthefigure.Whenthedisplacementofq0isdl,theworkdonebytheelectricfieldforceis

ThevoltagefromPtoQis1.Definitionofvoltage2.1.2ElectricPotentialIfq0ismovedfrompointPtopointQ,thetotalworkdonebytheelectricfieldforceisThevoltagebetweentwopointsisequaltotheworkdonebytheelectricfieldforcewhenaunitpositivechargeismovedbetweentwopoints.Thevoltagebetweenanytwopointsinanelectrostaticfieldisequaltothelineintegraloftheelectricfieldintensity.Ifthechargemoves

alonganyclosedpath

intheelectrostaticfield,theworkdonebytheelectricfieldforceisequaltozero.2.Theelectrostaticfieldisaconservationfield2.1.2ElectricPotentialThelooprouteintegraloftheelectricfieldintensityvector

ETheelectrostaticfieldisaconservativefield.3.Definitionandcalculationofpotential2.1.2ElectricPotentialThepotentialofapointinanelectricfieldisdefinedastheworkdonebytheforceoftheelectricfieldtomoveaunitpositivechargefromthatpointtoapointofzeropotential(thereferencepoint).IfpointQistakenasthepotentialreferencepointThepotentialatthereferencepointisobviouslyzero.Thepotentialofapointatinfinityisusuallychosentobezero2.1.2ElectricPotential

ThepotentialofapointchargeqattheoriginofthecoordinatesinavacuumatadistancerIfthefieldsourcehasnpointcharges,thepotentialatthefieldpoint(r)canbeobtainedbyapplyingthesuperpositionprincipleWherethefieldsourcecontainsvariousdistributedcharges3.Definitionandcalculationofpotential2.1.3TherelationshipbetweenelectricfieldintensityandpotentialThecurlofthegradientofanyscalarisequaltozero1.FromEto2.FromtoEBecauseof

,applythecurltheoremtheelectrostaticfieldisanon-rotationalfieldTheelectricfieldintensityisequaltothenegativegradientofpotentialSolution:Example2-2Figureshowsthelinechargeofacircularringwithradiusa(linechargedensity

)onthexOyplaneinvacuum.TrytodeterminethepotentialandelectricfieldintensityatpointPontheaxiszawayfromthecenterofthecircle.Accordingtotheanalysis,thefieldintensityhasonlyzcomponentExample2-3Figureshowsauniformlychargeddiskwithradiusaandsurfacechargedensity

.Findtheelectricfieldintensityontheaxisofthedisk.ThepotentialgeneratedbythechargeontheentirediskatpointPisSolution:Takearingwithradiusrandwidthdr

onthedisk,andthepotentialgeneratedbytheelementcharge

ontheringatpointPontheaxisisTheobtainableelectricfieldintensityisApplythegradientexpressionincylindricalcoordinatesystemIftheradiusofthedisctendstoinfinityExample

Findthepotentialofauniformlychargedwirewithalengthof2Landachargedensityof

.xyzL-L

Solution:Usingcylindricalcoordinates,letthelinechargecoincidewiththez-axis,withthemidpointlocatedatthecoordinateorigin.Duetoaxialsymmetry,theelectricpotentialisindependentofz.When

Theaboveexpressionbecomesinfinitebecausethechargeisnotdistributedwithinafinitearea,andthepotentialreferencepointischosenataninfinitelydistantpoint.Anarbitraryconstantcanbeaddedtotheaboveformula,resultinginSelectingthepointwhereρ=aasthepotentialreferencepoint,wehave①

Electricfieldline(Eline)E

lineisacurveonwhichthedirectionofthetangentlineateachpointisthesameasthedirectionofthefieldintensityatthatpoint.IfdlrepresentstheelementsegmentonE

line,theE=kdl,namelyEx=kdx,Ey=kdy,

Ez=kdz,

andthedifferentialequationoflineinrectangularcoordinatesystemis:2.1.4Thedistributionpatternofthefield②EquipotentialsurfaceandequipotentiallineTheequationoftheequipotentialsurfaceisthefollowingTheequipotentialsurfaceandthefieldlineareperpendiculareverywhere.Thedensertheequipotentialdistribution,thegreaterthefieldintensity.等位線(xiàn)的切線(xiàn)等位線(xiàn)PαEP‘dlExample2-4DeterminetheequationofElineinpointchargefield.zxyP(x,y,z)orqSolution:Supposepointchargeislocatedattheoriginofcoordinates,thenFromdifferentialequation

get2.2ElectrostaticFieldsindielectrics2.2.1Polarizationofdielectrics

Theresponseofamediumtoanelectromagneticfieldcanbedividedintothreecases:

polarization,magnetization,andconduction.

Theparametersthatdescribetheelectromagneticpropertiesofamediumare:

dielectricconstant,magneticpermeability,andconductivity.1.Propertiesofconductorsinelectrostaticequilibrium(1)Thefieldintensityintheconductorshouldbezero;(2)Conductorsareequipotential,andthepotentialsateachpointareequal;(3)Thedirectionofthefieldintensityatanypointontheconductorsurfacemustbeperpendiculartotheconductorsurface;(4)Iftheconductorischarged,thechargecanonlybedistributedonthesurface.2.2.1Polarizationofdielectrics2.dielectricsTheparticlesinsideadielectriccanmoveslightlyundertheactionofanexternalelectricfield,butcannotleavetherangeofmolecules.Thechargecarriedbytheparticlesinsidethedielectriciscalledboundcharge.Anidealmedium,alsocalledaninsulator,isamediumwithzeroelectricalconductivity.

2.2.1Polarizationofdielectrics2.dielectricsThedielectriclosesitsdielectricpropertyandbecomesaconductorundertheactionofastrongenoughelectricfield,whichiscalleddielectricbreakdown.Thecorrespondingvoltageiscalledbreakdownvoltage,andthefieldintensityatthetimeofbreakdowniscalledbreakdownfieldintensity.2.2.1Polarizationofdielectrics3.ElectricdipoleElectricdipolereferstotwoelectricchargeswithoppositesignsandequalvaluesthatareveryclosetoeachother.Electricdipolemoment:Thedirectionofpisfromthenegativechargetothepositivecharge.Anelectricdipolecausesanelectricfieldaroundit,anditisalsosubjecttoaforceinanexternalelectricfield.2.2.1Polarizationofdielectrics4.PolarizationofdielectricUndertheactionofanappliedelectricfield,theboundchargeinthemediumshifts.Thephenomenoniscalledpolarization.Insidethepolarizedmediumappearanumberofelectricdipolesarrangedinroughlythesamedirection,theseelectricdipoleswillproduceanelectricfield.2.2.1Polarizationofdielectrics1)Undertheinfluenceofanexternalelectricfield,adielectricmaterialwillundergopolarization.2)Thedegreeofpolarizationisdeterminedbythemagnitudeoftheelectricdipolemomentwithinthemedium.4.PolarizationofdielectricTheelectricfieldinapolarizedmediumisthecompositeoftheexternallyappliedelectricfieldandtheelectricfieldoftheelectricdipole.2.2.1PolarizationofdielectricsUniformmedium:Thecharacteristicsofthemediumdonotchangewiththechangeofspatialcoordinates.Isotropicmedium:Thecharacteristicsofthemediumdonotchangewiththechangeofthedirectionoftheelectricfieldquantity,otherwiseitisanisotropicmedium,suchasdiode.Linearmedium:theparametersofthemediumdonotchangewiththechangeoftheelectricfieldquantity.4.PolarizationofdielectricCommontermsformediaareasfollows.2.2.1Polarizationofdielectrics5.PolarizationintensityDefinition:thevectorsumoftheelectricdipolemomentintheunitvolumeafterpolarization

Theexperimentalresultsshowthatthepolarizationintensityisproportionaltotheappliedfieldintensityinisotropiclinearmedia

istheelectricpolarizationofthedielectric,apositiverealnumber.2.2.1Polarizationofdielectrics

Afterdielectricpolarization,theremaybeanetresidualchargeinside,whichiscalledthepolarizationvolumecharge6.Furtherdiscussiononpolarizationphenomenon

Afterdielectricpolarization,netresidualchargesmayalsoappearonthedielectricinterface,resultinginpolarizationsurfacecharges2.2.1PolarizationofdielectricsTherelationshipbetweenthebodychargedensity,surfacechargedensityofpolarizationchargeandpolarizationintensity:WhereistheunitvectorinthedirectionoftheouternormalofthemediumsurfaceBasedonthedivergencetheorem2.2.1Polarizationofdielectrics6.Furtherdiscussiononpolarizationphenomenon1.Electricdisplacement

Question:Whenthereisamediumpresentinspace,thepossiblepresenceofpolarizedchargeswithinitwillgenerateanadditionalelectricfield,whichwillaffecttheoveralldistributionoftheelectricfield.So:whencalculatingthetotalelectricfield,isitnecessarytofirstcalculatetheelectricfieldgeneratedbythepolarizedcharges?2.2.2ElectrastaticFieldsindielectrics1.Electricdisplacement

2.2.2ElectrastaticFieldsindielectricsinavacuum:inamedium: Electricdisplacement

:Usingthedivergencetheoremandconsideringunit:C/m2thefluxofelectricdisplacementthroughanyclosedsurfaceinthedielectricisequaltothealgebraicsumoffreechargessurroundedbytheclosedsurface.then

2.2.2ElectrastaticFieldsindielectricsInisotropiclinearmedia:2.2.2ElectrastaticFieldsindielectricstheelectricpolarizability,apositiverealnumber1.ConditionsforusingGauss'slawtocalculateelectricfieldintensityinasimpleanddirectmannerWhenEisuniformlydistributedonS,orwhentheintegralresultisknown!Whatproblempossessessuchcharacteristics?

Aproblemwithsymmetry!2.2.3ApplicationsofGauss’sFluxLawConditions:canbemovedoutsidetheintegralsignoftheGauss’slawforsolvingUnderwhatcircumstances

canbemovedoutsidetheintegralsign?

Sphericalsymmetrydistribution:2.2.3ApplicationsofGauss’sFluxLawAxisymmetricdistribution:2.2.3ApplicationsofGauss’sFluxLaw

Infiniteplanecharge:(a)(b)2.2.3ApplicationsofGauss’sFluxLawSolution:(1)Accordingtothepropertiesofconductorsinelectrostaticfields,thedistributionofchargescanbeobtained.(2)Tofindtheelectricfieldintensity,solvefromtheinsideout.q1-q1q1+q2Example2-5Itisknownthattherearetwoconcentricmetalsphericalshellsinvacuum.TheinnersphericalshellhasradiusR1andchargeq1,andtheoutersphericalshellhasradiusR2andthicknessandchargeq2.Findtheelectricfieldintensityandpotentialeverywhereinthefield.q1-q1q1+q2Tofindthefieldintensityatpointr,applyGauss'sfluxtheoremtodifferentregions,andconstructaGaussianclosedsurfaceasaspherewithradiusrandconcentricwiththeconductor.(3)Tocalculatethepotential,solvefromtheoutsideinward.Weshouldfirstcalculatethepotentialoutsidetheoutersphericalshell,withtheinfinitedistanceasthereferencepoint.Sincetheconductorisanequipotentialbody,thepotentialofeverypartoftheconductorwithintheoutersphericalshellisExample2-6ItisknownthatthereisavolumechargeinavacuumuniformlydistributedinasphereofradiusRwithvolumechargedensityρ.Findtheelectricfieldintensityandpotentialinsideandoutsidethesphere.Solution:(1)Findtheelectricfieldintensity.AccordingtoGauss'sfluxtheoremIfallthecharge

inthesphereisexpressed,and

(2)

FindtheelectricfieldpotentialTofindthepotentialofanypointoutsidethesphere,withinfinityasthereferencepointTakethepotentialofthespheresufaceasthereferencepotential,thepotentialofanypointinthesphereis2.3FundamentalequationsandboundaryconditionsofelectrostaticfieldsDifferentialform:Constitutiverelation:1.ThefundamentalequationsIntegralform:2.3.1Thefundamentalequations1.Theboundaryconditionoftheelectricfieldintensity:Conclusion:thetangentialcomponentoftheelectricfieldintensityisequaltobothsidesoftheinterfaceofthetwodielectric,orthetangentialcomponentofthefieldintensityiscontinuous.2.3.3Boundaryconditionsofelectrostaticfields2.Theboundaryconditionoftheelectricdisplacement:Conclusion:thenormalcomponentoftheelectricdisplacement

attheinterfaceofthetwodielectricisequal,orthenormalcomponentoftheelectricdisplacement

iscontinuous.2.3.3Boundaryconditionsofelectrostaticfields3.Therefractionlaw:介質(zhì)2介質(zhì)12.3.3BoundaryconditionsofelectrostaticfieldsLetthefirstmediumbetheconductorandthesecondmediumbethefreespace.Consideringthatthefieldintensityandelectricdisplacementinsidetheconductor

bezero.2.3.4BoundaryconditionsattheinterfacebetweenconductoranddielectricThechargecanonlybedistributedontheconductorsurface(theinterfacebetweenthetwomedia)whentheconductorischarged.Whereisthechargesurfacedensityoftheconductorsurface2.3.4BoundaryconditionsattheinterfacebetweenconductoranddielectricInstructions:Inadielectric,thefieldintensityandelectricdisplacementadjacenttotheconductorsurfaceareperpendiculartotheconductorsurface.

Thevalueoftheelectricdisplacementisequaltothesurfacechargedensityofthepoint.2.4Poisson’s

equation,Laplace’s

equation

anduniqueness

theoremIntheactiveregion:ForuniformmediumthePoissonequationoftheelectrostaticfieldInthepassiveregion:theLaplaceequationoftheelectrostaticfield2.4.1Poisson’s

equationandLaplace’s

equationExample2-8

Foranaircapacitorwithparallelplates,thevoltageU0

betweenthetwoplatesandthechargewithabodydensityof

isevenlydistributedbetweenthetwoplates.Theedgeeffectisignoredandtheelectricfielddistributioniscalculated.Solution:A

coordinatesystemisestablished,potentialφisonlyafunctionofxcoordinate.Poissonequationissimplifiedfromthesecondorderpartialdifferentialequationtothefollowingtotaldifferentialequation:IntegratetheabovetotaldifferentialequationtoobtainthegeneralsolutionoftheequatioApplythegivenboundaryvalue:Wecanfindtheintegralconstant:Wegetthedistributionfunctionofthepotential

φFindthenegativegradientofpotentialtoobtaintheelectricfieldintensity

φGivenavalueof

or

ontheboundarysurfaceSofthedomainV,thePoissonequationorLaplaceequationhasauniquevalueinthedomainV.2.4.2Uniqueness

theoremsignificantimportanceTheconditionsfortheuniquenessofsolutionstotheelectrostaticfieldboundaryvalueproblemItprovidesatheoreticalbasisforvarioussolvingmethodsofstaticfieldboundaryvalueproblemsItprovidesacriterionforthecorrectnessofthesolutionThestatementoftheuniquenesstheoremThethreeinvariantconditionssatisfiedbytheuniquenesstheoremaresummarizedbyPoissonequationasfollows.Thechargeanditsdistributionareinvariantinthesolvingdomain.Thedielectricinthesolvingdomainisinvariant.Theboundaryconditionsattheinterfacedonotchange.IfPoissonequationisdeterministic,thethreeinvariantsaresatisfied.Thesolutionoftheequationisuniquenomatterwhatmethodisusedtosolveit,andtheobtainedsolutionisvalideverywhereinthefieldAccordingtotheuniquenesstheorem,youcansolveaprobleminanyoneofmoreconvenientways,aslongasthegivenconditionsaresatisfied,thesolutioniscorrect.2.4.2Uniqueness

theorem2.5MethodofImages1.TheimageofapointchargeagainstaninfinitegroundedconductorplaneTheresultiscorrectbecauseitsatisfiestheboundaryconditionsoftheoriginalproblem.2.5.1ImageofthegroundingconductorplaneimagechargePotentialfunctionWhen

z=0,有效區(qū)域qqPotentialfunctionintheupperhalfspace(z≥0)qTheinducedchargedensityontheconductorplaneisThetotalinducedchargeontheconductorplaneisExample2-9Findtheinducedchargedistributiononthegroundcausedbyapointchargeqintheairwithdistancedfromtheground.TheinducedsurfacechargedensityisSolution:Thedirectionofthefieldintensityistowardstheground,anditsmagnitudeisthefollowing:Byusingtheareaintegralofthesurfacechargedensity,thetotalinducedchargeonthewholegroundcanbeobtainedfrom2.5.2TheimageofapointchargeattheinterfaceoftwoinfinitedielectricplaneFigure1Characteristics:Undertheinfluenceoftheelectricfieldofapointcharge,thedielectricbecomespolarized,resultingintheformationofapolarizedchargedistributiononthedielectricinterface.Atthispoint,theelectricfieldatanypointinspaceisjointlygeneratedbythepointchargeandthepolarizedcharges.Question:AsshowninFigure1,theinterfacebetweentwodifferentdielectricswithdielectricconstantsε1andε2isaninfinitelylargeplane.Thereisapointchargeqindielectric1,locatedatadistancehfromtheinterfaceplane.2.5.2TheimageofapointchargeattheinterfaceoftwoinfinitedielectricplaneFigure2Analysismethod:Whencalculatingthepotentialindielectric1,theimagechargeslocatedindielectric2areusedtoreplacethepolarizedchargesontheinterface,andtheentirespaceisconsideredtobefilledwithauniformdielectricwithadielectricconstantofε1Thepotentialinmedium1is

Whencalculatingthepotentialindielectric2,theimagechargeslocatedindielectric1areusedtoreplacethepolarizedchargesontheinterface,andtheentirespaceisregardedasfilledwithauniformdielectricwithadielectricconstantofε2.Thepotentialindielectric2isFigure32.5.2TheimageofapointchargeattheinterfaceoftwoinfinitedielectricplanegetDescription:Foraninfinitelylonglinecharge(perunitlength)locatedneartheinterfaceofaninfinitelylargeflatsurfacemediumandparalleltotheinterface,itsimagechargeisUtilizetheboundaryconditionssatisfiedbythepotential2.5.2Theimageofapointchargeattheinterfaceoftwoinfinitedielectricplane2.6CapacitanceandPartialCapacitance2.6CapacitanceandpartialcapacitanceCapacitorsplayanimportantroleintuning,by-pass,couplingandfilteringcircuits.Theycanbeusedintuningcircuitsoftransistorradios,couplingcircuitsandby-passcircuitsofcolorTVsets,etc.isdefinedastheratioofthecharge

qitcarriestoitspotential

,thatis

Capacitanceofanisolatedconductor:

Thecapacitanceofacapacitorcomposedoftwoconductorswithequalbutoppositecharges(±q)is

Thecapacitanceofacapacitorisrelatedtotheshape,size,mutualpositionandmediumbetweenconductors,buthasnothingtodowiththeelectrificationofconductors.2.6.1CapacitanceSolutio:Assumesthattheinnerconductorchargeforq,andevenlydistributedinthesurfaceoftheconductorball,ThevoltagebetweentwoconcentricconductorspheresisThecapacitanceofthesphericalcapacitorisWhen

Example2-10AsshowninFigure,thesphericalradiusoftheinnerconductorisa,andtheinnerradiusoftheoutershellisb.Thecapacitanceofthesphericalcapacitoriscalculated.capacitanceofanisolatedconductorballExample

Considertheparalleldouble-conductortransmissionline,

theradiusoftheconductorisa,andtheaxialdistancebetweenthetwoconductorsisD,whereD>>a.Calculatethecapacitanceperunitlengthofthetransmissionline.Solution:ApplyingGauss'stheoremandthesuperpositionprinciple,wecanobtainPotentialdifferencebetweentwoconductorsThecapacitanceperunitlengthis2.6.1CapacitanceExample:Theradiusoftheinnerconductorofacoaxiallineisa,theradiusoftheouterconductorisb,andtheuniformmediumfilledbetweentheinnerandouterconductorshasadielectricconstantofε.Calculatethecapacitanceperunitlengthofthecoaxialline.PotentialdifferencebetweeninnerandouterconductorsSolution:ApplyingGauss'stheorem,wecanobtaintheelectricfieldintensityatanypointbetweentheinnerandouterconductorsasTherefore,thecapacitanceperunitlengthofthecoaxiallineiscoaxialline2.6.1Capacitance

thevoltagebetweenanytwoconductorsisnotonlyaffectedbyitsowncharge,butalsobythechargeonotherconductors.Theconceptofcapacitanceneedstobeextendedandtheconceptofpartialcapacitanceisintroduced.InasystemcomposedofNconductors,duetothelinearrelationshipbetweenpotentialandthechargecarriedbyeachconductor,thepotentialofeachconductoris式中:——selfpotentialcoefficient——mutualpotentialcoefficient(1)potentialcoefficient2.6.2PartialCapacitanceIfthepotentialofeachconductorisknown,theelectricquantityofeachconductorcanbeexpressedasWhere:——Selfinductioncoefficient——Mutualinductioncoefficient(2)inductioncoefficient2.6.2PartialCapacitanceExpresstheelectricquantityofeachconductorasWhere:(3)partialcapacitance——Partialcapacitancebetweenconductoriandconductorj——Thepartialcapacitancebetweenconductoriandtheground2.6.2PartialCapacitance2.7Electrostaticenergyandelectrostaticforce2.7靜電能量與靜電力

Thefieldenergyisequaltothetotalworkdonebytheexternalpowersourceduringtheestablishmentofthiselectricfield。

Theenergyofanelectrostaticfieldoriginatesfromtheenergyprovidedbyexternalsourcesduringtheprocessofestablishingachargesystem.

Themostfundamentalcharacteristicofanelectrostaticfieldisitsforceoncharges,indicatingthattheelectrostaticfieldpossessesenergy.

Duringthechargingprocess,theexternalpowersourcemustovercometheinteractionforcebetweenchargesandperformwork.

Thesystemischargedfromzero,andthefinalchargeisqandthepotentialis

.Atacertainpointduringthechargingprocess,thechargeisαqandthepotentialisα

.(0≤α≤1)

Whenαincreasesto(α+dα),theworkdonebytheexternalpowersourceis:α

(qdα).Integratingαfrom0to1,weobtainthetotalworkdonebytheexternalpowersource2.7.1Therelationshipbetweenelectrostaticenergyandpotential

Accordingtothelawofconservationofenergy,thisworkisequivalenttotheelectricfieldenergyWepossessedbyachargedbodywithachargeofq,thatisForavolumedistributionofchargewithachargedensityρ,theelectricfieldenergypossessedbythechargeρdVwithinavolumeelementdVis2.7.1TherelationshipbetweenelectrostaticenergyandpotentialTheelectricfieldenergyofavolume-distributedchargesisForsurface-distributedchargesForachargedsystemcomposedofmultipleconductor

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論