版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省杭州七縣區(qū)2026屆高一上數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中為奇函數(shù),且在定義域上為增函數(shù)的有()A. B.C. D.2.下列函數(shù)在定義域內(nèi)單調(diào)遞增的是()A. B.C. D.3.16、17世紀(jì),隨著社會各領(lǐng)域的科學(xué)知識迅速發(fā)展,龐大的數(shù)學(xué)計算需求對數(shù)學(xué)運算提出了更高要求,改進計算方法,提高計算速度和準(zhǔn)確度成了當(dāng)務(wù)之急.蘇格蘭數(shù)學(xué)家納皮爾發(fā)明了對數(shù),是簡化大數(shù)運算的有效工具,恩格斯曾把納皮爾的對數(shù)稱為十七世紀(jì)的三大數(shù)學(xué)發(fā)明之一.已知,,設(shè),則所在的區(qū)間為(是自然對數(shù)的底數(shù))()A. B.C. D.4.方程的解所在的區(qū)間為()A. B.C. D.5.已知函數(shù),則A.是奇函數(shù),且在R上是增函數(shù) B.是偶函數(shù),且在R上是增函數(shù)C.是奇函數(shù),且在R上是減函數(shù) D.是偶函數(shù),且在R上是減函數(shù)6.將函數(shù)的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)()A.在區(qū)間上單調(diào)遞減 B.在區(qū)間上單調(diào)遞增C.在區(qū)間上單調(diào)遞減 D.在區(qū)間上單調(diào)遞增7.已知集合,,若,則a的取值范圍是A B.C. D.8.設(shè)全集,集合,,則等于A. B.{4}C.{2,4} D.{2,4,6}9.如圖,直角梯形ABCD中,A=90°,B=45°,底邊AB=5,高AD=3,點E由B沿折線BCD向點D移動,EMAB于M,ENAD于N,設(shè)BM=,矩形AMEN的面積為,那么與的函數(shù)關(guān)系的圖像大致是()A. B.C. D.10.已知集合A={1,2,3,4},B={x∈R|0<x-1<3},則A∩B=()A. B.{2,3}C.{1,2,3} D.{2,3,4}二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),的圖象恒過定點P,則P點的坐標(biāo)是_____.12.已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,為常數(shù)),則=_________.13.若函數(shù)在區(qū)間上為減函數(shù),則實數(shù)的取值范圍為________14.已知,,則_____;_____15.設(shè),則a,b,c的大小關(guān)系為_________.16.將正方形沿對角線折成直二面角,有如下四個結(jié)論:①;②是等邊三角形;③與所成的角為,④取中點,則為二面角的平面角其中正確結(jié)論是__________.(寫出所有正確結(jié)論的序號)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知全集.(1)求;(2)求.18.已知函數(shù)是定義在上的偶函數(shù),函數(shù).(1)求實數(shù)的值;(2)若時,函數(shù)的最小值為.求實數(shù)的值.19.設(shè)函數(shù)f(x)=(x>0)(1)作出函數(shù)f(x)的圖象;(2)當(dāng)0<a<b,且f(a)=f(b)時,求+的值;(3)若方程f(x)=m有兩個不相等的正根,求m的取值范圍20.已知集合:①;②;③,集合(m為常數(shù)),從①②③這三個條件中任選一個作為集合A,求解下列問題:(1)定義,當(dāng)時,求;(2)設(shè)命題p:,命題q:,若p是q成立的必要不充分條件,求實數(shù)m的取值范圍21.設(shè)平面向量,,函數(shù)(Ⅰ)求時,函數(shù)的單調(diào)遞增區(qū)間;(Ⅱ)若銳角滿足,求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)函數(shù)的奇偶性,可排除A,B;說明的奇偶性以及單調(diào)性,可判斷C;根據(jù)的單調(diào)性,判斷D.【詳解】函數(shù)為非奇非偶函數(shù),故A錯;函數(shù)為偶函數(shù),故B錯;函數(shù),滿足,故是奇函數(shù),在定義域R上,是單調(diào)遞增函數(shù),故C正確;函數(shù)在上是增函數(shù),在上是增函數(shù),在定義域上不單調(diào),故D錯,故選:C2、D【解析】根據(jù)題意,依次分析選項中函數(shù)的單調(diào)性,綜合即可得答案詳解】解:根據(jù)題意,依次分析選項:對于A,,是二次函數(shù),在其定義域上不是單調(diào)函數(shù),不符合題意;對于B,,是正切函數(shù),在其定義域上不是單調(diào)函數(shù),不符合題意;對于C,,是指數(shù)函數(shù),在定義域內(nèi)單調(diào)遞減,不符合題意;對于D,,是對數(shù)函數(shù),在定義域內(nèi)單調(diào)遞增,符合題意;故選:D3、A【解析】根據(jù)指數(shù)與對數(shù)運算法則直接計算.【詳解】,所以故選:A.4、C【解析】將方程轉(zhuǎn)化為函數(shù)的零點問題,根據(jù)函數(shù)單調(diào)性判斷零點所處區(qū)間即可.【詳解】函數(shù)在上單增,由,知,函數(shù)的根處在里,故選:C5、A【解析】分析:討論函數(shù)的性質(zhì),可得答案.詳解:函數(shù)的定義域為,且即函數(shù)是奇函數(shù),又在都是單調(diào)遞增函數(shù),故函數(shù)在R上是增函數(shù)故選A.點睛:本題考查函數(shù)的奇偶性單調(diào)性,屬基礎(chǔ)題.6、D【解析】由條件根據(jù)函數(shù)的圖象變換規(guī)律得到變換之后的函數(shù)解析式,再根據(jù)正弦函數(shù)的單調(diào)性判斷即可【詳解】解:將函數(shù)的圖象向右平移個單位長度,得到,若,則,因為在上不單調(diào),故在上不單調(diào),故A、B錯誤;若,則,因為在上單調(diào)遞增,故在上單調(diào)遞增,故C錯誤,D正確;故選:D7、D【解析】化簡集合A,根據(jù),得出且,從而求a的取值范圍,得到答案詳解】由題意,集合或,;若,則且,解得,所以實數(shù)的取值范圍為故選D【點睛】本題主要考查了對數(shù)函數(shù)的運算性質(zhì),以及集合的運算問題,其中解答中正確求解集合A,再根據(jù)集合的運算求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、C【解析】由并集與補集的概念運算【詳解】故選:C9、A【解析】根據(jù)已知可得:點E在未到達C之前,y=x(5-x)=5x-x2;且x≤3,當(dāng)x從0變化到2.5時,y逐漸變大,當(dāng)x=2.5時,y有最大值,當(dāng)x從2.5變化到3時,y逐漸變小,到達C之后,y=3(5-x)=15-3x,x>3,根據(jù)二次函數(shù)和一次函數(shù)的性質(zhì).故選A.考點:動點問題的函數(shù)圖象;二次函數(shù)的圖象.10、B【解析】求解一元一次不等式化簡,再由交集運算得答案【詳解】解:,2,3,,,,2,3,,故選:二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】令,解得,且恒成立,所以函數(shù)的圖象恒過定點;故填.12、【解析】先由函數(shù)奇偶性,結(jié)合題意求出,計算出,即可得出結(jié)果.【詳解】因為為定義在上的奇函數(shù),當(dāng)時,,則,解得,則,所以,因此.故答案為:.13、【解析】分類討論,時根據(jù)二次函數(shù)的性質(zhì)求解【詳解】時,滿足題意;時,,解得,綜上,故答案為:14、①.②.【解析】利用指數(shù)式與對數(shù)的互化以及對數(shù)的運算性質(zhì)化簡可得結(jié)果.【詳解】因為,則,故.故答案為:;215、【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性可得到,,,從而可比較a,b,c的大小關(guān)系.【詳解】因為,,,所以.故答案為:.16、①②④【解析】如圖所示,取中點,則,,所以平面,從而可得,故①正確;設(shè)正方形邊長為,則,所以,又因為,所以是等邊三角形,故②正確;分別取,的中點為,,連接,,.則,且,,且,則是異面直線,所成的角在中,,,∴則是正三角形,故,③錯誤;如上圖所示,由題意可得:,則,由可得,據(jù)此可知:為二面角的平面角,說法④正確.故答案為:①②④.點睛:(1)有關(guān)折疊問題,一定要分清折疊前后兩圖形(折前的平面圖形和折疊后的空間圖形)各元素間的位置和數(shù)量關(guān)系,哪些變,哪些不變(2)研究幾何體表面上兩點的最短距離問題,常選擇恰當(dāng)?shù)哪妇€或棱展開,轉(zhuǎn)化為平面上兩點間的最短距離問題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)交集計算可得.(2)根據(jù)補集與并集的計算可得.【小問1詳解】由己知,所以【小問2詳解】∵,所以,所以.18、(1)(2)【解析】(1)根據(jù)函數(shù)的奇偶性求得的值.(2)結(jié)合指數(shù)函數(shù)、二次函數(shù)的性質(zhì)求得.【小問1詳解】的定義域為,為偶函數(shù),所以,.【小問2詳解】由(1)得..令,結(jié)合二次函數(shù)的性質(zhì)可知:當(dāng)時,時,最小,即,解得,舍去.當(dāng)時,時,最小,即,解得(負根舍去).當(dāng)時,時,最小,即,解得,舍去.綜上所述,.19、(1)見解析;(2)2;(3)見解析.【解析】(1)將函數(shù)寫成分段函數(shù),先作出函,再將x軸下方部分翻折到軸上方即可得到函數(shù)圖象;(2)根據(jù)函數(shù)的圖象,可知在上是減函數(shù),而在上是增函數(shù),利用b且,即可求得的值;(3)構(gòu)造函數(shù),由函數(shù)的圖象可得結(jié)論【詳解】(1)如圖所示(2)∵f(x)==故f(x)在(0,1]上是減函數(shù),而在(1,+∞)上是增函數(shù)由0<a<b且f(a)=f(b),得0<a<1<b,且-1=1-,∴+=2.(3)由函數(shù)f(x)的圖象可知,當(dāng)0<m<1時,函數(shù)f(x)的圖象與直線y=m有兩個不同的交點,即方程f(x)=m有兩個不相等的正根.【點睛】本題考查絕對值函數(shù),考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生的作圖能力,正確作圖是關(guān)鍵20、(1);(2)【解析】(1)求出集合的范圍,取交集即可(2)求出集合的范圍,根據(jù)p是q成立的必要不充分條件,得到,從而求出參數(shù)的取值范圍【小問1詳解】選①:,若,即時,即,解得,若,則,無解,所以的解集為,故,由,可得,即,解得,故,則選②:,解得,故,,,即,解得,故,則選③:,,解得,故,,,即,解得,故,則【小問2詳解】由,即,解得,因為p是q成立的必要不充分條件,所以,所以或,解得,故m的取值范圍為21、(Ⅰ);(Ⅱ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能家居產(chǎn)品推廣項目可行性研究報告
- 住宿場地出租合同范本
- 櫥柜板購銷合同范本
- 大型設(shè)備購買合同范本
- 采購鋁管合同范本
- 微信購房合同范本
- 關(guān)于水果購銷合同范本
- 工程檢測送檢合同范本
- 食品供貨合同范本熟食
- 小區(qū)門房造價合同范本
- 婦幼保健院存在的問題及整改措施情況匯報
- T/CECCEDA 1-2025企業(yè)管理創(chuàng)新體系要求及實施指南
- 2025片仔癀(北京)生物醫(yī)藥有限公司總經(jīng)理市場化選聘延長筆試歷年參考題庫附帶答案詳解
- 人教精通版(2024)四年級上冊英語 Unit 1 Sports Lesson 3 教學(xué)設(shè)計
- 2025一建《建筑工程管理與實務(wù)》案例簡答300問
- 廣東東莞市勞動合同范本
- 項目可行性研究報告評估咨詢管理服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 2025廣西公需科目考試題庫和答案(覆蓋99%考題)廣西一區(qū)兩地一園一通道+人工智能時代的機遇
- TCACM1020.103-2019道地藥材第103部分廣地龍
- 桑日縣國土空間規(guī)劃(2021-2035年)
- 模具壽命管理辦法
評論
0/150
提交評論