版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省池州市2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線,則它的焦點(diǎn)坐標(biāo)為()A. B.C. D.2.已知圓與圓沒(méi)有公共點(diǎn),則實(shí)數(shù)a的取值范圍為()A. B.C. D.3.已知橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為.點(diǎn)為上不在坐標(biāo)軸上的任意一點(diǎn),且四條直線的斜率之積大于,則的離心率的取值范圍是()A. B.C. D.4.定義域?yàn)榈暮瘮?shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.5.已知數(shù)列滿足,,在()A.25 B.30C.32 D.646.如圖,在平行六面體中,底面是邊長(zhǎng)為的正方形,若,且,則的長(zhǎng)為()A. B.C. D.7.在三棱錐中,,,則異面直線PC與AB所成角的余弦值是()A. B.C. D.8.兩圓x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直線的方程為()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=09.當(dāng)實(shí)數(shù),m變化時(shí),的最大值是()A.3 B.4C.5 D.610.已知實(shí)數(shù)、滿足,則的最大值為()A. B.C. D.11.已知的周長(zhǎng)等于10,,通過(guò)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,頂點(diǎn)的軌跡方程可以是()A. B.C. D.12.已知函數(shù)滿足,則曲線在點(diǎn)處的切線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn),拋物線的焦點(diǎn)為,點(diǎn)是拋物線上任意一點(diǎn),則周長(zhǎng)的最小值是__________.14.設(shè)函數(shù)為奇函數(shù),當(dāng)時(shí),,則_______15.已知函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為___________.16.等比數(shù)列的前n項(xiàng)和,則的通項(xiàng)公式為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)p:函數(shù)在區(qū)間是遞增的;q:方程有實(shí)數(shù)解.(1)若p為真命題,求m的取值范圍;(2)若“”為真,“”為假,求m的取值范圍.18.(12分)已知是數(shù)列的前n項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求的前n項(xiàng)和.19.(12分)在等差數(shù)列中,,.(1)求數(shù)列通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.20.(12分)已知橢圓:經(jīng)過(guò)點(diǎn)為,且.(1)求橢圓的方程;(2)若直線與橢圓相切于點(diǎn),與直線相交于點(diǎn).已知點(diǎn),且,求此時(shí)的值.21.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活棕櫚樹的株數(shù),數(shù)學(xué)期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補(bǔ)種,求需要補(bǔ)種棕櫚樹的概率.22.(10分)在平面直角坐標(biāo)系中,橢圓的離心率為,且點(diǎn)在橢圓C上(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),試探究直線上是否存在定點(diǎn)Q,使得為定值.若存在,求出定點(diǎn)Q的坐標(biāo)及實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將拋物線方程化標(biāo)準(zhǔn)形式后得到焦準(zhǔn)距,可得結(jié)果.【詳解】由得,所以,所以,所以拋物線的焦點(diǎn)坐標(biāo)為.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:將拋物線方程化為標(biāo)準(zhǔn)形式是解題關(guān)鍵.2、B【解析】求出圓、的圓心和半徑,再由兩圓沒(méi)有公共點(diǎn)列不等式求解作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,因圓、沒(méi)有公共點(diǎn),則有或,即或,又,解得或,所以實(shí)數(shù)a的取值范圍為.故選:B3、A【解析】設(shè),求得,得到,求得,結(jié)合,即可求解.【詳解】由橢圓的方程,可得,設(shè),則,由,因?yàn)樗臈l直線的斜率之積大于,即,所以,則離心率,又因?yàn)闄E圓離心率,所以橢圓的離心率的取值范圍是.故選:A.4、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進(jìn)而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因?yàn)閒′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因?yàn)閒(1)=1,所以g(1)=2f(1)-1-1=0.所以當(dāng)x<1時(shí),g(x)<0,即2f(x)<x+1.故選B.【點(diǎn)睛】本題主要考察導(dǎo)數(shù)的運(yùn)算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題5、A【解析】根據(jù)題中條件,得出數(shù)列公差,進(jìn)而可求出結(jié)果.【詳解】由得,所以數(shù)列是以為公差的等差數(shù)列,又,所以.故選:A.【點(diǎn)睛】本題主要考查等差數(shù)列的基本量運(yùn)算,屬于基礎(chǔ)題型.6、D【解析】由向量線性運(yùn)算得,利用數(shù)量積的定義和運(yùn)算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.7、A【解析】分別取、、的中點(diǎn)、、,連接、、、、,由題意結(jié)合平面幾何的知識(shí)可得、、或其補(bǔ)角即為異面直線PC與AB所成角,再由余弦定理即可得解.【詳解】分別取、、的中點(diǎn)、、,連接、、、、,如圖:由可得,所以,在,,可得由中位線的性質(zhì)可得且,且,所以或其補(bǔ)角即為異面直線PC與AB所成角,在中,,所以異面直線AB與PC所成角的余弦值為.故選:A.【點(diǎn)睛】思路點(diǎn)睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過(guò)平移直線,把異面直線的問(wèn)題化歸為共面直線問(wèn)題來(lái)解決,具體步驟如下:(1)平移:平移異面直線中的一條或兩條,作出異面直線所成的角;(2)認(rèn)定:證明作出的角就是所求異面直線所成的角;(3)計(jì)算:求該角的值,常利用解三角形;(4)取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時(shí),應(yīng)取它的補(bǔ)角作為兩條異面直線所成的角8、C【解析】?jī)蓤A方程相減得出公共弦所在直線的方程.【詳解】?jī)蓤A方程相減得,即x﹣2y+6=0則公共弦所在直線的方程為x﹣2y+6=0故選:C9、D【解析】根據(jù)點(diǎn)到直線的距離公式可知可以表示單位圓上點(diǎn)到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點(diǎn)到直線的距離,設(shè),因直線,即表示恒過(guò)定點(diǎn),根據(jù)圓的性質(zhì)可得.故選:D.10、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結(jié)合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點(diǎn),代數(shù)式的幾何意義是連接可行域內(nèi)一點(diǎn)與定點(diǎn)連線的斜率,由圖可知,當(dāng)點(diǎn)在可行域內(nèi)運(yùn)動(dòng)時(shí),直線的傾斜角為銳角,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線的傾斜角最大,此時(shí)取最大值,即.故選:A.11、A【解析】根據(jù)橢圓的定義進(jìn)行求解即可.【詳解】因?yàn)榈闹荛L(zhǎng)等于10,,所以,因此點(diǎn)的軌跡是以為焦點(diǎn)的橢圓,且不在直線上,因此有,所以頂點(diǎn)的軌跡方程可以是,故選:A12、A【解析】求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的定義求解,然后求解切線的斜率即可【詳解】解:函數(shù),可得,,可得,即,所以,可得,解得,所以,所以曲線在點(diǎn)處的切線方程為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用拋物線的定義結(jié)合圖形即得.【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線的方程為,過(guò)點(diǎn)作,垂足為,則,所以的周長(zhǎng)為,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立.故答案為:.14、【解析】由奇函數(shù)的定義可得,代入解析式即可得解.【詳解】函數(shù)為奇函數(shù),當(dāng)時(shí),,所以.故答案為-1.【點(diǎn)睛】本題主要考查了奇函數(shù)的求值問(wèn)題,屬于基礎(chǔ)題.15、【解析】由題意可得與的圖象有三個(gè)不同的交點(diǎn),經(jīng)判斷時(shí)不符合題意,當(dāng)時(shí),時(shí),兩個(gè)函數(shù)圖象有一個(gè)交點(diǎn),可得時(shí)與的圖象有兩個(gè)交點(diǎn),等價(jià)于與的圖象有兩個(gè)不同的交點(diǎn),對(duì)求導(dǎo),數(shù)形結(jié)合即可求解.【詳解】令可得,若函數(shù)函數(shù)有三個(gè)零點(diǎn),則可得方程有三個(gè)根,即與的圖象有三個(gè)不同的交點(diǎn),作出的圖象如圖:當(dāng)時(shí),是以為頂點(diǎn)開口向下的拋物線,此時(shí)與的圖象沒(méi)有交點(diǎn),不符合題意;當(dāng)時(shí),與的圖象只有一個(gè)交點(diǎn),不符合題意;當(dāng)時(shí),時(shí),與的圖象有一個(gè)交點(diǎn),所以時(shí)與的圖象有兩個(gè)交點(diǎn),即方程有兩個(gè)不等的實(shí)根,即方程有兩個(gè)不等的實(shí)根,可得與的圖象有兩個(gè)不同的交點(diǎn),令,則,由即可得,由即可得,所以在單調(diào)遞增,在單調(diào)遞減,作出其圖象如圖:當(dāng)時(shí),,當(dāng)時(shí),可得與的圖象有兩個(gè)不同的交點(diǎn),即時(shí),函數(shù)有三個(gè)零點(diǎn),所以實(shí)數(shù)的取值范圍為,故答案為:【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.16、【解析】利用的關(guān)系,結(jié)合是等比數(shù)列,即可求得結(jié)果.【詳解】因?yàn)?,故?dāng)時(shí),,則,又當(dāng)時(shí),,因?yàn)槭堑缺葦?shù)列,故也滿足,即,故,此時(shí)滿足,則.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)或【解析】(1)依題意在區(qū)間上恒成立,參變分離可得在區(qū)間上恒成立,再利用基本不等式計(jì)算可得;(2)首先求出命題為真時(shí)參數(shù)的取值范圍,再根據(jù)“”為真,“”為假,即可得到真假,或假真,從而得到不等式組,解得即可;【小問(wèn)1詳解】解:為真命題,即函數(shù)在區(qū)間上是遞增的∴在區(qū)間上恒成立,∴在區(qū)間上恒成立,∵,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴的取值范圍為.【小問(wèn)2詳解】解:為真命題,即方程有實(shí)數(shù)解∴即∴或∵“”為真,“”為假∴真假,或假真∴或,解得或,∴的取值范圍為或;18、(1)(2)【解析】(1)當(dāng)時(shí),化簡(jiǎn)得到,進(jìn)而得到數(shù)列的通項(xiàng)公式;(2)由(1)得到,結(jié)合裂項(xiàng)法,即可求解.【小問(wèn)1詳解】解:由題意,數(shù)列的前n項(xiàng)和,且,當(dāng)時(shí),,當(dāng)時(shí),,滿足上式,所以數(shù)列的通項(xiàng)公式為.【小問(wèn)2詳解】解:由,可得,所以.19、(1);(2).【解析】(1)利用等差數(shù)列的基本量,根據(jù)題意,列出方程,即可求得公差以及通項(xiàng)公式;(2)根據(jù)(1)中所求,結(jié)合等差數(shù)列的前項(xiàng)和的公式,求得,以及,再利用等比數(shù)列的前項(xiàng)和公式求得.【小問(wèn)1詳解】因?yàn)?,所以,故可得,所?【小問(wèn)2詳解】因?yàn)椋?于是,令,則.顯然數(shù)列是等比數(shù)列,且,公比,所以數(shù)列的前n項(xiàng)和.20、(1);(2).【解析】(1)根據(jù)橢圓離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線與橢圓的位置關(guān)系求出點(diǎn)的坐標(biāo),結(jié)合平面向量垂直的性質(zhì)進(jìn)行求解即可.【詳解】(1)由已知得,,而,解得,橢圓的方程為;(2)設(shè)直線方程為代入得,化簡(jiǎn)得由,得,,設(shè),則,,則設(shè),則,則,所以在軸存在使.,,所以在.21、(1),分布列見解析;(2).【解析】(1)根據(jù)二項(xiàng)分布知識(shí)即可求解;(2)將補(bǔ)種棕櫚樹的概率轉(zhuǎn)化為成活的概率,結(jié)合概率加法公式即可求解.【小問(wèn)1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問(wèn)2詳解】記“需要補(bǔ)種棕櫚樹”為事件A,由(1)得,,所以需要補(bǔ)種棕櫚樹的概率為.22、(1)(2)存在,定點(diǎn)的坐標(biāo)為,實(shí)數(shù)的值為【解析】(1)由題意可得,再結(jié)合,可求出,從而可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)培訓(xùn)內(nèi)容規(guī)劃與實(shí)施模板
- 燃?xì)庠O(shè)施安全培訓(xùn)資料匯編
- 團(tuán)隊(duì)成員培訓(xùn)需求與能力評(píng)估表
- 商場(chǎng)人員衛(wèi)生培訓(xùn)制度
- 培訓(xùn)學(xué)校衛(wèi)生打掃制度
- 教室操場(chǎng)衛(wèi)生檢查制度
- 旅館從業(yè)人員衛(wèi)生制度
- 健全衛(wèi)生清掃消毒制度
- 酒吧衛(wèi)生制度管理制度
- 培訓(xùn)學(xué)校環(huán)境衛(wèi)生制度
- 《筑牢安全防線 歡度平安寒假》2026年寒假安全教育主題班會(huì)課件
- 2026國(guó)家國(guó)防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫(kù)及答案詳解(新)
- 信息技術(shù)應(yīng)用創(chuàng)新軟件適配測(cè)評(píng)技術(shù)規(guī)范
- 2026版安全隱患排查治理
- 道路施工安全管理課件
- 肉瘤的課件教學(xué)課件
- VTE患者并發(fā)癥預(yù)防與處理
- 車輛救援合同協(xié)議書
- 貴州省遵義市匯川區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期12月期末數(shù)學(xué)試題
- UWB定位是什么協(xié)議書
- 第三終端藥品銷售技巧
評(píng)論
0/150
提交評(píng)論