版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省泰州市興化市第一中學(xué)2026屆高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示,則它的體積是A.B.C.D.2.直線截圓所得的線段長為()A.2 B.C.1 D.3.已知兩個非零向量,滿足,則下面結(jié)論正確的是A. B.C. D.4.用a,b,c表示空間中三條不同的直線,γ表示平面,給出下列命題:①若a⊥b,b⊥c,則a∥c;②若a∥b,a∥c,則b∥c;③若a∥γ,b∥γ,則a∥b其中真命題的序號是()A.①② B.③C.①③ D.②5.在新冠肺炎疫情初始階段,可以用指數(shù)模型::I(t)=ert(其中r為指數(shù)增長率)描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律.有學(xué)者基于已有數(shù)據(jù)估計出累計感染病例數(shù)增加1倍需要的時間約為2天,據(jù)此,在新冠肺炎疫情初始階段,指數(shù)增長率r的值約為()(參考數(shù)值:ln20.69)A.0.345 B.0.23C.0.69 D.0.8316.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)(且)的點(diǎn)的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知,動點(diǎn)滿足,則動點(diǎn)軌跡與圓位置關(guān)系是()A.外離 B.外切C.相交 D.內(nèi)切7.一個幾何體的三視圖如圖所示(單位:),則該幾何體的體積為()A B.C. D.8.已知函數(shù),若,,,則實(shí)數(shù)、、的大小關(guān)系為()A. B.C. D.9.設(shè)集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},則PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}10.函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的單調(diào)遞減區(qū)間為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.比較大小:______cos()12.______________13.已知扇形的面積為4,圓心角為2弧度,則該扇形的弧長為_________14.已知函數(shù),則的值等于______15.已知函數(shù)(1)當(dāng)時,求的值域;(2)若,且,求的值;16.已知函數(shù),則函數(shù)零點(diǎn)的個數(shù)為_________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.若函數(shù)是奇函數(shù)(),且,.(1)求實(shí)數(shù),,的值;(2)判斷函數(shù)在上的單調(diào)性,并利用函數(shù)單調(diào)性的定義證明.18.已知全集,集合,集合(1)若集合中只有一個元素,求的值;(2)若,求19.如圖,在三棱柱ABC-A1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F(xiàn)、F1分別是AC,A1C1的中點(diǎn).求證:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.20.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若與共線,求x的值;(2)若⊥,求x的值;(3)記f(x)=?,當(dāng)f(x)取得最小值時,求x的值21.已知(1)若p為真命題,求實(shí)數(shù)x的取值范圍(2)若p為q成立的充分不必要條件,求實(shí)數(shù)a的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關(guān)幾何體體積公式進(jìn)行計算由幾何體的三視圖可知幾何體為一個組合體,即一個正方體中間去掉一個圓錐體,所以它的體積是.2、C【解析】先算出圓心到直線的距離,進(jìn)而根據(jù)勾股定理求得答案.【詳解】圓,即圓心.圓心C到直線的距離,則直線截圓所得線段長為:.故選:C.3、B【解析】,所以,故選B考點(diǎn):平面向量的垂直4、D【解析】因為空間中,用a,b,c表示三條不同的直線,①中正方體從同一點(diǎn)出發(fā)的三條線,滿足已知但是a⊥c,所以①錯誤;②若a∥b,b∥c,則a∥c,滿足平行線公理,所以②正確;③平行于同一平面的兩直線的位置關(guān)系可能是平行、相交或者異面,所以③錯誤;故選D5、A【解析】由題設(shè)可知第天感染病例數(shù)為,則第天的感染感染病例數(shù)為,由感染病例數(shù)增加1倍需要的時間約為2天,則,解出即可得出答案.【詳解】由題設(shè)可知第天感染病例數(shù)為,則第天的感染感染病例數(shù)為由感染病例數(shù)增加1倍需要的時間約為2天,則所以,即所以故選:A6、C【解析】設(shè)動點(diǎn)P的坐標(biāo),利用已知條件列出方程,化簡可得點(diǎn)P的軌跡方程為圓,再判斷圓心距和半徑的關(guān)系即可得解.,詳解】設(shè),由,得,整理得,表示圓心為,半徑為的圓,圓的圓心為為圓心,為半徑的圓兩圓的圓心距為,滿足,所以兩個圓相交.故選:C.7、B【解析】由三視圖知,該幾何體由兩個相同的圓錐和一個圓柱組合而成,圓錐的底面圓半徑為1,高為1,圓柱的母線長為2,底面圓半徑為1,所以幾何體的體積為,選B.8、D【解析】根據(jù)條件判斷函數(shù)是偶函數(shù),且當(dāng)時是增函數(shù),結(jié)合函數(shù)單調(diào)性進(jìn)行比較即可【詳解】函數(shù)為偶函數(shù),當(dāng)時,為增函數(shù),,,,則(1),即,則,故選:9、D【解析】集合P={x|x?A}表示集合A的子集構(gòu)成的集合,故P={?,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同樣Q={?,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故選D.10、D【解析】先由函數(shù)是函數(shù)的反函數(shù),所以,再求得,再求函數(shù)的定義域,再結(jié)合復(fù)合函數(shù)的單調(diào)性求解即可.【詳解】解:由題意函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱知,函數(shù)是函數(shù)的反函數(shù),所以,即,要使函數(shù)有意義,則,即,解得,設(shè),則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因為函數(shù)在定義域上為增函數(shù),所以由復(fù)合函數(shù)的單調(diào)性性質(zhì)可知,則此函數(shù)的單調(diào)遞減區(qū)間是,故選D【點(diǎn)睛】本題考查了函數(shù)的反函數(shù)的求法及復(fù)合函數(shù)的單調(diào)性,重點(diǎn)考查了函數(shù)的定義域,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、>【解析】利用誘導(dǎo)公式化簡后,根據(jù)三角函數(shù)的單調(diào)性進(jìn)行判斷即可【詳解】cos(π)=cos(﹣4π)=cos()=cos,cos(π)=cos(﹣4π)=cos()=cos,∵y=cosx在(0,π)上為減函數(shù),∴coscos,即cos(π)>cos(π)故答案為>【點(diǎn)睛】本題主要考查函數(shù)的大小比較,根據(jù)三角函數(shù)的誘導(dǎo)公式以及三角函數(shù)的單調(diào)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題12、【解析】利用指數(shù)的運(yùn)算法則和對數(shù)的運(yùn)算法則即求.【詳解】原式.故答案為:.13、4【解析】設(shè)扇形半徑為,弧長為,則,解得考點(diǎn):角的概念,弧度的概念14、2【解析】由分段函數(shù)可得,從而可得出答案.【詳解】解:由,得.故答案為:2.15、(1)(2)【解析】(1)化簡函數(shù)解析式為,再利用余弦函數(shù)的性質(zhì)求函數(shù)的值域即可;(2)由已知得,利用同角之間的關(guān)系求得,再利用湊角公式及兩角差的余弦公式即可得解.【小問1詳解】,,利用余弦函數(shù)的性質(zhì)知,則【小問2詳解】,又,,則則16、【解析】解方程,即可得解.【詳解】當(dāng)時,由,可得(舍)或;當(dāng)時,由,可得.綜上所述,函數(shù)零點(diǎn)的個數(shù)為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,;(2)在上為增函數(shù),證明見解析.【解析】(1)根據(jù)題意,由奇函數(shù)的性質(zhì)可得,進(jìn)而可得,解可得、、的值,即可得答案;(2)利用定義法證明函數(shù)的單調(diào)性,按照:設(shè)元、作差、變形、判斷符號、下結(jié)論的步驟完成即可【詳解】解:(1)根據(jù)題意,函數(shù)是奇函數(shù)(),且,則,又由,則有,且,解得,,.(2)由(1)可得:,函數(shù)在上為增函數(shù)證明:設(shè)任意的,,又由,則且,,則有,故函數(shù)在上為增函數(shù)【點(diǎn)睛】本題考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,關(guān)鍵是求出、、的值,屬于基礎(chǔ)題18、(1)(2)【解析】(1)對應(yīng)一元二次方程兩根相等,.(2)先由已知確定、的值,再確定集合、的元素即可.【小問1詳解】因為集合中只有一個元素,所以,【小問2詳解】當(dāng)時,,,,此時,,19、(1)證明見解析;(2)證明見解析.【解析】(1)由棱柱的性質(zhì)及中點(diǎn)得B1F1∥BF,AF1∥C1F.,從而有線面平行,再有面面平行;(2)先證明B1F1⊥平面ACC1A1,然后可得面面垂直【詳解】證明:(1)在正三棱柱ABC-A1B1C1中,連接,∵F、F1分別是AC、A1C1的中點(diǎn),,,,∴是平行四邊形,是平行四邊形,∴B1F1∥BF,AF1∥C1F.平面,平面,∴平面,同理平面,又∵B1F1∩AF1=F1,平面,平面,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,平面,∴B1F1⊥AA1.又是等邊三角形,是中點(diǎn),∴B1F1⊥A1C1,而A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1?平面AB1F1,∴平面AB1F1⊥平面ACC1A1.【點(diǎn)睛】本題考查證明面面平行和面面垂直,掌握面面平行和面面垂直的判定定理是解題關(guān)鍵20、(1);(2);(3).【解析】(1)利用兩向量平行有可得到一個關(guān)于的方程,利用三角函數(shù)恒等變化化簡進(jìn)而求得x的值.(2)利用兩向量垂直有可得到一個關(guān)于的方程,利用三角函數(shù)恒等變化化簡進(jìn)而求得x的值.(3)根據(jù)化出一個關(guān)于的方程,再利用恒等變化公式將函數(shù)轉(zhuǎn)化成,從而找到最小值所取得的x的值.【詳解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]與共線,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=?=cosx-,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生產(chǎn)檢測員考試題及答案
- 生產(chǎn)檢驗方法試題及答案
- 軟件開發(fā)終極試題及答案
- 中醫(yī)護(hù)理緩解神經(jīng)性疼痛的思路與方法
- 2026 年初中英語《語法填空》專題練習(xí)與答案 (100 題)
- 2026年深圳中考英語失分點(diǎn)攻克試卷(附答案可下載)
- 《GA 2117-2023警用服飾 姓名牌》專題研究報告
- 2026年大學(xué)大二(交通運(yùn)輸)運(yùn)輸經(jīng)濟(jì)學(xué)階段測試試題及答案
- 2026年深圳中考數(shù)學(xué)知識體系構(gòu)建試卷(附答案可下載)
- 2026年深圳中考數(shù)學(xué)答題規(guī)范特訓(xùn)試卷(附答案可下載)
- 文旅融合調(diào)研活動方案
- 自帶車司機(jī)合同協(xié)議書
- 摩托車制造流程圖
- 2025四川省土地租賃合同范本
- GB/T 5709-2025紡織品非織造布術(shù)語
- 企業(yè)微信使用手冊
- 綠化養(yǎng)護(hù)驗收實(shí)施方案1
- 2024年理財行業(yè)高質(zhì)量發(fā)展白皮書-農(nóng)銀理財
- 危險化學(xué)品經(jīng)營單位(安全生產(chǎn)管理人員)考試題及答案
- UL498標(biāo)準(zhǔn)中文版-2019插頭插座UL標(biāo)準(zhǔn)中文版
- 《非物質(zhì)文化遺產(chǎn)》課程教學(xué)大綱
評論
0/150
提交評論