版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版中學七7年級下冊數學期末解答題測試試卷及答案一、解答題1.(1)若一圓的面積與這個正方形的面積都是,設圓的周長為,正方形的周長為,則______.(填“=”或“<”或“>”號)(2)如圖,若正方形的面積為,李明同學想沿這塊正方形邊的方向裁出一塊面積為的長方形紙片,使它的長和寬之比為3:2,他能裁出嗎?請說明理由.2.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設計一種可行的裁剪方案;(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設計一種裁剪方案,若不能,請簡要說明理由.3.張華想用一塊面積為400cm2的正方形紙片,沿著邊的方向剪出一塊面積為300cm2的長方形紙片,使它的長寬之比為3:2.他不知能否裁得出來,正在發(fā)愁.李明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意李明的說法嗎?張華能用這塊紙片裁出符合要求的紙片嗎?4.如圖,紙上有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形.(1)拼成的正方形的面積與邊長分別是多少?(2)如圖所示,以數軸的單位長度的線段為邊作一個直角三角形,以數軸的-1點為圓心,直角三角形的最大邊為半徑畫弧,交數軸正半軸于點A,那么點A表示的數是多少?點A表示的數的相反數是多少?(3)你能把十個小正方形組成的圖形紙,剪開并拼成正方形嗎?若能,請畫出示意圖,并求它的邊長5.有一塊正方形鋼板,面積為16平方米.(1)求正方形鋼板的邊長.(2)李師傅準備用它裁剪出一塊面積為12平方米的長方形工件,且要求長寬之比為,問李師傅能辦到嗎?若能,求出長方形的長和寬;若不能,請說明理由.(參考數據:,).二、解答題6.已知,AB∥CD,點E為射線FG上一點.(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當點E在FG延長線上時,此時CD與AE交于點H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關系,請說明你的結論;(3)如圖3,當點E在FG延長線上時,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數.7.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點E是在平行線AB,CD內,AD右側的任意一點,探究∠BAE,∠CDE,∠E之間的數量關系,并證明.(3)如圖3,若∠C=90°,且點E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內部,且交BC于點M,交AE延長線于點F,∠AED+∠AEC=180°,①直接寫出∠AED與∠FDC的數量關系:.②點P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補全圖形后,求∠EPD的度數8.閱讀下面材料:小亮同學遇到這樣一個問題:已知:如圖甲,ABCD,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補充完整.證明:過點E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點A,B在直線a上,點C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點E.①如圖1,當點B在點A的左側時,若∠ABC=60°,∠ADC=70°,求∠BED的度數;②如圖2,當點B在點A的右側時,設∠ABC=α,∠ADC=β,請你求出∠BED的度數(用含有α,β的式子表示).9.已知,點在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點,請利用(1)的結論說明:.(3)圖3中,的平分線與的平分線相交于點,請直接寫出與之間的數量關系.10.已知,點為平面內一點,于.(1)如圖1,求證:;(2)如圖2,過點作的延長線于點,求證:;(3)如圖3,在(2)問的條件下,點、在上,連接、、,且平分,平分,若,,求的度數.三、解答題11.已知,點為平面內一點,于.(1)如圖1,點在兩條平行線外,則與之間的數量關系為______;(2)點在兩條平行線之間,過點作于點.①如圖2,說明成立的理由;②如圖3,平分交于點平分交于點.若,求的度數.12.[感知]如圖①,,求的度數.小樂想到了以下方法,請幫忙完成推理過程.解:(1)如圖①,過點P作.∴(_____________),∴,∴________(平行于同一條直線的兩直線平行),∴_____________(兩直線平行,同旁內角互補),∴,∴,∴,即.[探究]如圖②,,求的度數;[應用](1)如圖③,在[探究]的條件下,的平分線和的平分線交于點G,則的度數是_________o.(2)已知直線,點A,B在直線a上,點C,D在直線b上(點C在點D的左側),連接,若平分平分,且所在的直線交于點E.設,請直接寫出的度數(用含的式子表示).13.(1)光線從空氣中射入水中會產生折射現象,同時光線從水中射入空氣中也會產生折射現象,如圖1,光線a從空氣中射入水中,再從水中射入空氣中,形成光線b,根據光學知識有,請判斷光線a與光線b是否平行,并說明理由.(2)光線照射到鏡面會產生反射現象,由光學知識,入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,如圖2有一口井,已知入射光線與水平線的夾角為,問如何放置平面鏡,可使反射光線b正好垂直照射到井底?(即求與水平線的夾角)(3)如圖3,直線上有兩點A、C,分別引兩條射線、.,,射線、分別繞A點,C點以1度/秒和3度/秒的速度同時順時針轉動,設時間為t,在射線轉動一周的時間內,是否存在某時刻,使得與平行?若存在,求出所有滿足條件的時間t.14.如圖1,,E是、之間的一點.(1)判定,與之間的數量關系,并證明你的結論;(2)如圖2,若、的兩條平分線交于點F.直接寫出與之間的數量關系;(3)將圖2中的射線沿翻折交于點G得圖3,若的余角等于的補角,求的大?。?5.如圖,兩個形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點P逆時針旋轉.(1)①如圖1,∠DPC=度.②我們規(guī)定,如果兩個三角形只要有一組邊平行,我們就稱這兩個三角形為“孿生三角形”,如圖1,三角板BPD不動,三角板PAC從圖示位置開始每秒10°逆時針旋轉一周(0°旋轉360°),問旋轉時間t為多少時,這兩個三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉,轉速3°/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉,轉速2°/秒,在兩個三角板旋轉過程中,(PC轉到與PM重合時,兩三角板都停止轉動).設兩個三角板旋轉時間為t秒,以下兩個結論:①為定值;②∠BPN+∠CPD為定值,請選擇你認為對的結論加以證明.四、解答題16.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數;(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點E,∠ADC=α°,∠ABC=β°,求∠AEC的度數;(3)如圖3,PQ⊥MN于點O,點A是平面內一點,AB、AC交MN于B、C兩點,AD平分∠BAC交PQ于點D,請問的值是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.17.小明在學習過程中,對教材中的一個有趣問題做如下探究:(習題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點.求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點,使得,的平分線交于點.的外角的平分線所在直線與的延長線交于點.直接寫出與的數量關系.18.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點D、E分別是邊AB、BC的中點,若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數量關系為.(2)如圖4,在△ABC中,點D、E分別在邊AB、AC上,連接BE、CD交于點O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.19.Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為:;(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關系為:.20.【問題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數量關系?并說明理由;【問題遷移】如圖2,DF∥CE,點P在三角板AB邊上滑動,∠PCE=∠α,∠PDF=∠β.(1)當點P在E、F兩點之間運動時,如果α=30°,β=40°,則∠DPC=°.(2)如果點P在E、F兩點外側運動時(點P與點A、B、E、F四點不重合),寫出∠DPC與α、β之間的數量關系,并說明理由.(圖1)(圖2)【參考答案】一、解答題1.(1)<;(2)不能,理由見解析【分析】(1)分別根據圓的面積和正方形的面積得出其半徑或邊長,再分別求得其周長,根據實數大小比較的方法,可得答案;(2)設裁出的長方形的長為,寬為,由題意得關于解析:(1)<;(2)不能,理由見解析【分析】(1)分別根據圓的面積和正方形的面積得出其半徑或邊長,再分別求得其周長,根據實數大小比較的方法,可得答案;(2)設裁出的長方形的長為,寬為,由題意得關于的方程,解得的值,從而可得長方形的長和寬,將其與正方形的邊長比較,可得答案.【詳解】解:(1)圓的面積與正方形的面積都是,圓的半徑為,正方形的邊長為,,,,,.(2)不能裁出長和寬之比為的長方形,理由如下:設裁出的長方形的長為,寬為,由題意得:,解得或(不合題意,舍去),長為,寬為,正方形的面積為,正方形的邊長為,,不能裁出長和寬之比為的長方形.【點睛】本題考查了算術平方根在正方形和圓的面積及周長計算中的簡單應用,熟練掌握相關計算公式是解題的關鍵.2.(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設面積為400cm2的正方形紙片的邊長為acm∴解析:(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設面積為400cm2的正方形紙片的邊長為acm∴a2=400又∵a>0∴a=20又∵要裁出的長方形面積為300cm2∴若以原正方形紙片的邊長為長方形的長,則長方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形(2)∵長方形紙片的長寬之比為3:2∴設長方形紙片的長為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長方形紙片的長為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片3.不同意,理由見解析.【詳解】試題分析:設面積為300平方厘米的長方形的長寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長為20厘米,由于解析:不同意,理由見解析.【詳解】試題分析:設面積為300平方厘米的長方形的長寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長為20厘米,由于>20,所以用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.試題解析:解:不同意李明的說法.設長方形紙片的長為3x(x>0)cm,則寬為2xcm,依題意得:3x?2x=300,6x2=300,x2=50,∵x>0,∴x==,∴長方形紙片的長為cm,∵50>49,∴>7,∴>21,即長方形紙片的長大于20cm,由正方形紙片的面積為400cm2,可知其邊長為20cm,∴長方形紙片的長大于正方形紙片的邊長.答:李明不能用這塊紙片裁出符合要求的長方形紙片.點睛:本題考查了算術平方根的定義:一個正數的正的平方根叫這個數的算術平方根;0的算術平方根為0.也考查了估算無理數的大小.4.(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正解析:(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正方形,那么組成的大正方形的面積為10,邊長為10的算術平方根,畫圖.【詳解】試題分析:解:(1)拼成的正方形的面積與原面積相等1×1×5=5,邊長為,如圖(1)(2)斜邊長=,故點A表示的數為:;點A表示的相反數為:(3)能,如圖拼成的正方形的面積與原面積相等1×1×10=10,邊長為.考點:1.作圖—應用與設計作圖;2.圖形的剪拼.5.(1)4米(2)見解析【分析】(1)根據正方形邊長與面積間的關系求解即可;(2)設長方形的長寬分別為米、米,由其面積可得x值,比較長方形的長和寬與正方形邊長的大小可得結論.【詳解】解解析:(1)4米(2)見解析【分析】(1)根據正方形邊長與面積間的關系求解即可;(2)設長方形的長寬分別為米、米,由其面積可得x值,比較長方形的長和寬與正方形邊長的大小可得結論.【詳解】解:(1)正方形的面積是16平方米,正方形鋼板的邊長是米;(2)設長方形的長寬分別為米、米,則,,,,,長方形長是米,而正方形的邊長為4米,所以李師傅不能辦到.【點睛】本題考查了算術平方根的實際應用,靈活的利用算術平方根表示正方形和長方形的邊長是解題的關鍵.二、解答題6.(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據平行線的性質得到,,即可求得;(2)過過作,根據平行線的性質得到,,即;(3)設,則,通過三角形內角和得到,由角平分線解析:(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據平行線的性質得到,,即可求得;(2)過過作,根據平行線的性質得到,,即;(3)設,則,通過三角形內角和得到,由角平分線定義及得到,求出的值再通過三角形內角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設,則,,,又,,,平分,,,,即,解得,,.【點睛】本題主要考查了平行線的性質和判定,正確做出輔助線是解決問題的關鍵.7.(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據平行線的性質及判定可得結論;(2)過點E作EF∥AB,根解析:(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據平行線的性質及判定可得結論;(2)過點E作EF∥AB,根據平行線的性質得AB∥CD∥EF,然后由兩直線平行內錯角相等可得結論;(3)①根據∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導出角的關系;②先根據∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數.【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過點E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點睛】本題主要考查平行線的判定和性質,熟練掌握平行線的判定和性質,角平分線的性質等知識點是解題的關鍵.8.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據平行線的判定定理與性質定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側時,根據∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據平行線的判定定理與性質定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側時,根據∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數;②如圖2,過點E作EF∥AB,當點B在點A的右側時,∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數.【詳解】解:(1)過點E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數為65°;②如圖2,過點E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數為180°﹣.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是熟練掌握平行線的判定與性質.9.(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據AB∥CD,EG∥AB,所以CD∥EG,解析:(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據∠ABE的平分線與∠CDE的平分線相交于點F,結合(1)的結論即可說明:∠BED=2∠BFD;(3)圖3中,根據∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結合(1)的結論即可說明∠BED與∠BFD之間的數量關系.【詳解】解:(1)如圖1中,過點E作EG∥AB,則∠BEG=∠ABE,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點睛】本題考查了平行線的性質,解決本題的關鍵是掌握平行線的性質.10.(1)見解析;(2)見解析;(3).【分析】(1)先根據平行線的性質得到,然后結合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設∠DBE=a,則∠BFC=3解析:(1)見解析;(2)見解析;(3).【分析】(1)先根據平行線的性質得到,然后結合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設∠DBE=a,則∠BFC=3a,根據角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據三角形內角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數表達式,再根據平行的性質可得∠AFC+∠NCF=180°,代入即可算出a的度數,進而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質、角平分線的性質及角的計算,熟練應用平行線的性質、角平分線的性質是解答本題的關鍵.三、解答題11.(1)∠A+∠C=90°;(2)①見解析;②105°【分析】(1)根據平行線的性質以及直角三角形的性質進行證明即可;(2)①過點B作BG∥DM,根據平行線找角的聯系即可求解;②先過點B作BG∥解析:(1)∠A+∠C=90°;(2)①見解析;②105°【分析】(1)根據平行線的性質以及直角三角形的性質進行證明即可;(2)①過點B作BG∥DM,根據平行線找角的聯系即可求解;②先過點B作BG∥DM,根據角平分線的定義,得出∠ABF=∠GBF,再設∠DBE=α,∠ABF=β,根據∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根據AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=15°,進而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【詳解】解:(1)如圖1,AM與BC的交點記作點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,∴∠C=∠CBG,∠ABD=∠C;②如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質的運用,解決問題的關鍵是作平行線構造內錯角,運用等角的余角(補角)相等進行推導.余角和補角計算的應用,常常與等式的性質、等量代換相關聯.解題時注意方程思想的運用.12.[感知]見解析;[探究]70°;[應用](1)35;(2)或【分析】[感知]過點P作PM∥AB,根據平行線的性質得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數,結合∠1可得結果;解析:[感知]見解析;[探究]70°;[應用](1)35;(2)或【分析】[感知]過點P作PM∥AB,根據平行線的性質得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數,結合∠1可得結果;[探究]過點P作PM∥AB,根據AB∥CD,PM∥CD,進而根據平行線的性質即可求∠EPF的度數;[應用](1)如圖③所示,在[探究]的條件下,根據∠PEA的平分線和∠PFC的平分線交于點G,可得∠G的度數;(2)畫出圖形,分點A在點B左側和點A在點B右側,兩種情況,分別求解.【詳解】解:[感知]如圖①,過點P作PM∥AB,∴∠1=∠AEP=40°(兩直線平行,內錯角相等)∵AB∥CD,∴PM∥CD(平行于同一條直線的兩直線平行),∴∠2+∠PFD=180°(兩直線平行,同旁內角互補),∴∠PFD=130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;[探究]如圖②,過點P作PM∥AB,∴∠MPE=∠AEP=50°,∵AB∥CD,∴PM∥CD,∴∠PFC=∠MPF=120°,∴∠EPF=∠MPF-∠MPE=120°-50°=70°;[應用](1)如圖③所示,∵EG是∠PEA的平分線,FG是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,過點G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內錯角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內錯角相等).∴∠G=∠MGF-∠MGE=60°-25°=35°.故答案為:35.(2)當點A在點B左側時,如圖,故點E作EF∥AB,則EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∵平分平分,,∴∠ABE=∠BEF=,∠CDE=∠DEF=,∴∠BED=∠BEF+∠DEF=;當點A在點B右側時,如圖,故點E作EF∥AB,則EF∥CD,∴∠DEF=∠CDE,∠ABG=∠BEF,∵平分平分,,∴∠DEF=∠CDE=,∠ABG=∠BEF=,∴∠BED=∠DEF-∠BEF=;綜上:∠BED的度數為或.【點睛】本題考查了平行線的判定與性質、平行公理及推論,角平分線的定義,解決本題的關鍵是熟練運用平行線的性質.13.(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據等角的補角相等求出∠3與∠4的補角相等,再根據內錯角相等,兩直線平行即可判定a∥b;(2)根據入射光線與鏡面的夾角與反解析:(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據等角的補角相等求出∠3與∠4的補角相等,再根據內錯角相等,兩直線平行即可判定a∥b;(2)根據入射光線與鏡面的夾角與反射光線與鏡面的夾角相等可得∠1=∠2,然后根據平角等于180°求出∠1的度數,再加上40°即可得解;(3)分①AB與CD在EF的兩側,分別表示出∠ACD與∠BAC,然后根據兩直線平行,內錯角相等列式計算即可得解;②CD旋轉到與AB都在EF的右側,分別表示出∠DCF與∠BAC,然后根據兩直線平行,同位角相等列式計算即可得解;③CD旋轉到與AB都在EF的左側,分別表示出∠DCF與∠BAC,然后根據兩直線平行,同位角相等列式計算即可得解.【詳解】解:(1)平行.理由如下:如圖1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(內錯角相等,兩直線平行);(2)如圖2:∵入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,∴∠1=∠2,∵入射光線a與水平線OC的夾角為40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN與水平線的夾角為:25°+40°=65°,即MN與水平線的夾角為65°,可使反射光線b正好垂直照射到井底;(3)存在.如圖①,AB與CD在EF的兩側時,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠ACD=∠BAC,即115-3t=105-t,解得t=5;如圖②,CD旋轉到與AB都在EF的右側時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠DCF=∠BAC,即295-3t=105-t,解得t=95;如圖③,CD旋轉到與AB都在EF的左側時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,則∠DCF=∠BAC,即3t-295=t-105,解得t=95,此時t>105,∴此情況不存在.綜上所述,t為5秒或95秒時,CD與AB平行.【點睛】本題考查了平行線的判定與性質,光學原理,讀懂題意并熟練掌握平行線的判定方法與性質是解題的關鍵,(3)要注意分情況討論.14.(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結論得∠AFD=∠BAF+∠CDF,根據角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結論得到∠AFD=∠AED;(3)由(1)的結論得∠AGD=∠BAF+∠CDG,利用折疊性質得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計算出∠BAE的度數.【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結論得,、的兩條平分線交于點F,,,,,;(3)由(1)的結論得,而射線沿翻折交于點G,,,,,.【點睛】本題考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.15.(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結合已知條件可得:從而可得答案;②當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結合已知條件可得:從而可得答案;②當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差求解旋轉角,可得旋轉時間;當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時的旋轉時間與相同;(2)分兩種情況討論:當在上方時,當在下方時,①分別用含的代數式表示,從而可得的值;②分別用含的代數式表示,得到是一個含的代數式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當BD∥PC時,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉速為10°/秒,∴旋轉時間為3秒;如圖1﹣2,當PC∥BD時,∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點P逆時針旋轉的角度為180°+30°=210°,∵轉速為10°/秒,∴旋轉時間為21秒,如圖1﹣3,當PA∥BD時,即點D與點C重合,此時∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點P逆時針旋轉的角度為90°,∵轉速為10°/秒,∴旋轉時間為9秒,如圖1﹣4,當PA∥BD時,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點P逆時針旋轉的角度為90°+180°=270°,∵轉速為10°/秒,∴旋轉時間為27秒,如圖1﹣5,當AC∥DP時,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點P逆時針旋轉的角度為60°,∵轉速為10°/秒,∴旋轉時間為6秒,如圖1﹣6,當時,∴三角板PAC繞點P逆時針旋轉的角度為∵轉速為10°/秒,∴旋轉時間為秒,如圖1﹣7,當AC∥BD時,∵AC∥BD,∴∠DBP=∠BAC=90°,∴點A在MN上,∴三角板PAC繞點P逆時針旋轉的角度為180°,∵轉速為10°/秒,∴旋轉時間為18秒,當時,如圖1-3,1-4,旋轉時間分別為:,綜上所述:當t為或或或或或或時,這兩個三角形是“孿生三角形”;(2)如圖,當在上方時,①正確,理由如下:設運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結論錯誤.當在下方時,如圖,①正確,理由如下:設運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結論錯誤.綜上:①正確,②錯誤.【點睛】本題考查的是角的和差倍分關系,平行線的性質與判定,角的動態(tài)定義(旋轉角)的理解,掌握分類討論的思想是解題的關鍵.四、解答題16.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質,可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長BC交AD于點F,由三角形外角的性質,可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質,即可求得答案.(3)由三角形內角和定理,可得,利用角平分線的性質與三角形的外角的性質可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長BC交AD于點F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點睛】此題考查了三角形內角和定理、三角形外角的性質以及角平分線的定義.此題難度較大,注意掌握整體思想與數形結合思想的應用.17.[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據同角的余角相等可證明∠B=∠ACD,再根據三角形的外角的性質即可解析:[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據同角的余角相等可證明∠B=∠ACD,再根據三角形的外角的性質即可證明;[變式思考]根據角平分線的定義和對頂角相等可得∠CAE=∠DAF、再根據直角三角形的性質和等角的余角相等即可得出=;[探究延伸]根據角平分線的定義可得∠EAN=90°,根據直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據三角形外角的性質可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點共線
AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點睛】本題考查三角形的外角的性質,直角三角形兩銳角互余,角平分線的有關證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個外角等于與它不相鄰的兩個內角之和,理解并掌握是解決此題的關鍵.18.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結論;拓展延伸:(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 雅安市經濟和信息化局所屬事業(yè)單位雅安市無線電監(jiān)測和產業(yè)信息化發(fā)展中心(雅安市企業(yè)服務中心)2025年公開選調事業(yè)人員的(2人)考試備考題庫附答案
- 云南省玉溪市江川區(qū)衛(wèi)生健康系統(tǒng)招聘2026年畢業(yè)生29人備考題庫附答案
- 中煤第三建設集團(貴州)有限責任公司項目部管技人員招聘考試備考題庫必考題
- 2025浙江臺州市溫嶺市第五人民醫(yī)院招聘1人備考題庫附答案
- 浙江國企招聘-2026臺州椒江城市發(fā)展投資集團有限公司、臺州市高鐵新區(qū)開發(fā)建設有限公司招聘31人參考題庫附答案
- 2025年湖南省氣象部門事業(yè)單位招聘筆試真題
- 2026山東淄博市高青縣教育和體育局所屬事業(yè)單位招聘25人備考題庫及答案詳解參考
- 2026云南玉溪通??h公安局警務輔助人員招聘3人備考題庫(第一期)及答案詳解1套
- 2026年宜昌秭歸縣公安局警務輔助人員招聘22人備考題庫及參考答案詳解一套
- 2025 小學五年級科學下冊科學與生活的緊密聯系課件
- 一年級上冊數學應用題50道(重點)
- 嵌入式系統(tǒng)實現與創(chuàng)新應用智慧樹知到期末考試答案章節(jié)答案2024年山東大學
- 線纜及線束組件檢驗標準
- 人教部編版語文三年級下冊生字表筆順字帖可打印
- 口述史研究活動方案
- 別克英朗說明書
- 房屋租賃合同txt
- 珍稀植物移栽方案
- THBFIA 0004-2020 紅棗制品標準
- GB/T 34336-2017納米孔氣凝膠復合絕熱制品
- GB/T 10046-2008銀釬料
評論
0/150
提交評論