版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省”皖南八校“聯(lián)盟2026屆數學高二上期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件2.1852年英國來華傳教士偉烈亞力將《孫子算經》中“物不知數”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數按從小到大的順序排成一列,構成數列,則=()A.130 B.132C.140 D.1443.若雙曲線(,)的焦距為,且漸近線經過點,則此雙曲線的方程為()A. B.C. D.4.某商場為了解銷售活動中某商品銷售量與活動時間之間的關系,隨機統(tǒng)計了某次銷售活動中的商品銷售量與活動時間,并制作了下表:活動時間銷售量由表中數據可知,銷售量與活動時間之間具有線性相關關系,算得線性回歸方程為,據此模型預測當時,的值為()A B.C. D.5.已知隨機變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.326.如圖,過拋物線的焦點的直線交拋物線于點、,交其準線于點,若,且,則的值為()A. B.C. D.7.如圖,已知多面體,其中是邊長為4的等邊三角形,四邊形是矩形,,平面平面,則點到平面的距離是()A. B.C. D.8.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d9.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=010.已知集合,從集合A中任取一點P,則點P滿足約束條件的概率為()A. B.C. D.11.已知點是雙曲線的左、右焦點,以線段為直徑的圓與雙曲線在第一象限的交點為,若,則()A.與雙曲線的實軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線12.已知數據的平均數是,方差是4,則數據的方差是()A.3.4 B.3.6C.3.8 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足:,,則______14.已知,,,若,則______.15.已知點是橢圓上的一點,分別為橢圓的左、右焦點,已知=120°,且,則橢圓的離心率為___________.16.設函數滿足,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數在處的切線方程為.(1)求的解析式;(2)求函數圖象上的點到直線的距離的最小值.18.(12分)在平面直角坐標系xOy中,曲線的參數方程為,(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)已知,曲線與曲線相交于A,B兩點,求.19.(12分)已知函數(1)當時,求的極值;(2)討論的單調性20.(12分)如圖,已知拋物線的焦點為,點是軸上一定點,過的直線交與兩點.(1)若過的直線交拋物線于,證明縱坐標之積為定值;(2)若直線分別交拋物線于另一點,連接交軸于點.證明:成等比數列.21.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值22.(10分)已知函數,.(1)當時,求函數的極值;(2)若存在,使不等式成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.2、A【解析】分析數列的特點,可知其是等差數列,寫出其通項公式,進而求得結果,【詳解】被3整除余1且被4整除余2的數按從小到大的順序排成一列,這樣的數構成首項為10,公差為12的等差數列,所以,故,故選:A3、B【解析】根據題意得到,,解得答案.【詳解】雙曲線(,)的焦距為,故,.且漸近線經過點,故,故,雙曲線方程為:.故選:.【點睛】本題考查了雙曲線方程,意在考查學生對于雙曲線基本知識的掌握情況.4、C【解析】求出樣本中心點的坐標,代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數據可得,,將樣本中心點的坐標代入回歸直線方程可得,解得,所以,回歸直線方程為,故當時,.故選:C.5、C【解析】依據正態(tài)曲線的對稱性即可求得【詳解】由隨機變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C6、B【解析】分別過點、作準線的垂線,垂足分別為點、,設,根據拋物線的定義以及直角三角形的性質可求得,結合已知條件求得,分析出為的中點,進而可得出,即可得解.【詳解】如圖,分別過點、作準線的垂線,垂足分別為點、,設,則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.7、C【解析】利用面面垂直性質結合已知尋找兩兩垂直的三條直線建立空間直角坐標系,用向量法可解.【詳解】取的中點O,連接OB,過O在平面ACDE面內作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是邊長為4的等邊三角形,四邊形ACDE是矩形,∴以O為原點,OA,OB,OF分別為x,y,z軸,建立如圖所示空間直角坐標系則,,,設平面ABD的單位法向量,,由解得取,則∴點C到平面ABD的距離.故選:C8、A【解析】結合不等式的性質確定正確答案.【詳解】A選項,若且,則,所以A選項正確.B選項,若,則,所以B選項錯誤.C選項,如,但,所以C選項錯誤.D選項,如,但,所以D選項錯誤.故選:A9、A【解析】設出直線方程,利用待定系數法得到結果.【詳解】設與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設為10、C【解析】根據圓的性質,結合兩條直線的位置關系、幾何概型計算公式進行求解即可.【詳解】,圓心坐標為,半徑為,直線互相垂直,且交點為,由圓的性質可知:點P滿足約束條件的概率為,故選:C11、B【解析】由題意及雙曲線的定義可得,的值,進而可得A不正確,計算可判斷B正確,再求出,的關系可得C不正確,求出,的關系,進而求出漸近線的方程,可得D不正確【詳解】因為,又由題意及雙曲線的定義可得:,則,,所以A不正確;因為在以為直徑的圓上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B12、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數據的方差為:.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令n=n-1代回原式,相減可得,利用累乘法,即可得答案.【詳解】因為,所以,兩式相減可得,整理得,所以,整理得,又,解得.故答案為:14、【解析】根據題意,由向量坐標表示,列出方程,求出,,即可得出結果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標表示求參數,屬于基礎題型.15、【解析】設,由余弦定理知,所以,故填.16、5【解析】考點:函數導數與求值三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題可得,然后利用導數的幾何意義即求;(2)由題可得切點到直線的距離最小,即得.【小問1詳解】∵函數,∴的定義域為,,∴在處切線的斜率為,由切線方程可知切點為,而切點也在函數圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數在處相切,所以切點到直線的距離最小,最小值為,故函數圖象上的點到直線的距離的最小值為.18、(1),(2)2【解析】(1)消參數即可得曲線的普通方程,利用極坐標方程與直角坐標方程之間的轉化關系式,從而曲線的直角坐標方程;(2)將的參數方程代入的直角坐標方程,得關于的一元二次方程,由韋達定理得,即可得的值.【小問1詳解】由,消去參數,得,即,所以曲線的普通方程為.由,得,即,所以曲線的直角坐標方程為【小問2詳解】將代入,整理得,則,令方程的兩個根為由韋達定理得,所以.19、(1)極小值為,無極大值(2)答案見解析【解析】(1)求出導函數,由得增區(qū)間,得減區(qū)間,從而得極值;(2)求出導函數,分類討論確定和解得單調性小問1詳解】當時,,(x>0)則令,得,得,得,所以的單調遞減區(qū)間為;單調遞增區(qū)間為.所以的極小值為f(2)=,無極大值.【小問2詳解】令則當時,在上單調遞減.當時,,得,,得;,得在上單調遞減,在上單調遞增,綜上所述,當時,在上單調遞減.當時,在上單調遞減,在上單調遞增.20、(1)證明見解析(2)證明見解析【解析】(1)設直線方程為,聯(lián)立拋物線方程用韋達定理可得;(2)借助(1)中結論可得各點縱坐標之積,進而得到F、T、Q三點橫坐標關系,然后可證.【小問1詳解】顯然過T的直線斜率不為0,設方程為,聯(lián)立,消元得到,.【小問2詳解】由(1)設,因為AP與BQ均過T(t,0)點,可知,又AB過F點,所以,如圖:,,設M(n,0),由(1)類比可得.,且,成等比數列.21、(1)證明見解析;(2).【解析】(1):連結交交于點O,連結,,通過四棱臺的性質以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結交交于點O,連結,,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點睛】思路點睛:(1)找兩個平面的交線,可通過兩個平面的交點找到,也可利用線面平行的性質找和交線的平行直線;(2)求直線和平面所成角,過直線上一點做平面的垂線,則垂足和斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年新版膜世界協(xié)議
- 2026年新版半骨盆贗復協(xié)議
- 2024年芮城縣招教考試備考題庫附答案解析(奪冠)
- 品社國際間的交往課件
- 2024年道真仡佬族苗族自治縣招教考試備考題庫附答案解析(必刷)
- 2025年順德職業(yè)技術學院單招職業(yè)傾向性測試題庫附答案解析
- 2025年西安電力機械制造公司機電學院單招職業(yè)技能考試題庫附答案解析
- 2025年天津美術學院馬克思主義基本原理概論期末考試模擬題含答案解析(奪冠)
- 2025年河北醫(yī)科大學馬克思主義基本原理概論期末考試模擬題及答案解析(必刷)
- 2024年湄洲灣職業(yè)技術學院馬克思主義基本原理概論期末考試題及答案解析(奪冠)
- 2026年1月浙江省高考(首考)地理試題(含答案)
- 職高信息技術題目及答案
- 2026年各地高三語文1月聯(lián)考文言文匯編(文言詳解+挖空)
- 冰箱安裝施工方案
- 老年人摔傷后的長期護理計劃
- 2026元旦主題班會:馬年猜猜樂猜成語 (共130題)【課件】
- 2026年盤錦職業(yè)技術學院單招職業(yè)技能測試題庫及參考答案詳解一套
- 水利工程質量管理制度匯編
- 小區(qū)用火用電管理制度版本(3篇)
- 隨訪管理系統(tǒng)功能參數
- 探究應用新思維七年級數學練習題目初一
評論
0/150
提交評論