版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重慶市江津區(qū)高2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)坐標(biāo)是A. B.C. D.2.雙曲線的漸近線方程為A. B.C. D.3.已知直線:和直線:,拋物線上一動點(diǎn)P到直線和直線的距離之和的最小值是()A. B.C. D.4.已知實(shí)數(shù),滿足,則的最大值為()A. B.C. D.5.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.46.設(shè)為拋物線焦點(diǎn),直線,點(diǎn)為上任意一點(diǎn),過點(diǎn)作于,則()A.3 B.4C.2 D.不能確定7.若,,且,則()A. B.C. D.8.由直線上的點(diǎn)向圓引切線,則切線長的最小值為()A. B.C.4 D.29.下列函數(shù)是偶函數(shù)且在上是減函數(shù)的是A. B.C. D.10.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.611.橢圓的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.12.雙曲線:的左、右焦點(diǎn)分別為、,過的直線與y軸交于點(diǎn)A、與雙曲線右支交于點(diǎn)B,若為等邊三角形,則雙曲線C的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在處的切線方程為_________14.若向量滿足,則_________.15.若等比數(shù)列的前n項(xiàng)和為,且,則__________.16.若直線與直線相互平行,則實(shí)數(shù)___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等比數(shù)列的各項(xiàng)均為正數(shù),且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列前項(xiàng)和.18.(12分)如圖,扇形AOB的半徑為2,圓心角,點(diǎn)C為弧AB上一點(diǎn),平面AOB且,點(diǎn)且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小19.(12分)在如圖三角形數(shù)陣中第n行有n個(gè)數(shù),表示第i行第j個(gè)數(shù),例如,表示第4行第3個(gè)數(shù).該數(shù)陣中每一行的第一個(gè)數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,從第三行起每一行的數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中).已知.(1)求m及;(2)記,求.20.(12分)在平面直角坐標(biāo)系中,已知點(diǎn)在橢圓上,其中為橢圓E的離心率(1)求b的值;(2)A,B分別為橢圓E的左右頂點(diǎn),過點(diǎn)的直線l與橢圓E相交于M,N兩點(diǎn),直線與交于點(diǎn)T,求證:21.(12分)已知橢圓的左、右焦點(diǎn)分別是,點(diǎn)P是橢圓C上任一點(diǎn),若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點(diǎn),若過點(diǎn)且斜率不為0的直線交C于M,N兩點(diǎn),證明:直線與的交點(diǎn)在一條定直線上22.(10分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求B.(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在橫線上.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)為可知,拋物線即的焦點(diǎn)坐標(biāo)為,故選D.考點(diǎn):拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).2、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.3、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點(diǎn)P到直線和直線的距離之和,當(dāng)B,P,F(xiàn)三點(diǎn)共線時(shí),最小,再結(jié)合點(diǎn)到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準(zhǔn)線為,焦點(diǎn)為,∴點(diǎn)P到準(zhǔn)線的距離PA等于點(diǎn)P到焦點(diǎn)F的距離PF,即,∴點(diǎn)P到直線和直線的距離之和,∴當(dāng)B,P,F(xiàn)三點(diǎn)共線時(shí),最小,∵,∴,∴點(diǎn)P到直線和直線的距離之和的最小值為故選:A4、A【解析】畫出不等式組所表示的平面區(qū)域,利用直線的斜率公式模型進(jìn)行求解即可.【詳解】不等式組表示的平面區(qū)域如下圖所示:,代數(shù)式表示不等式組所表示的平面區(qū)域內(nèi)的點(diǎn)與點(diǎn)連線的斜率,由圖象可知:直線的斜率最大,由,即,即的最大值為:,因此的最大值為,故選:A5、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因?yàn)?,所以,所?故選:C6、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因?yàn)檫^點(diǎn)作于,可得,所以,故選:A.7、A【解析】由于對數(shù)函數(shù)的存在,故需要對進(jìn)行放縮,結(jié)合(需證明),可放縮為,利用等號成立可求出,進(jìn)而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當(dāng)且僅當(dāng),等號成立.所以,當(dāng)且僅當(dāng)時(shí),等號成立,又,所以,即,所以,又,所以,,故故選:A8、D【解析】切點(diǎn)與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點(diǎn)與圓心連線和半徑的關(guān)系,利用點(diǎn)到直線的距離公式求出圓心與直線上點(diǎn)距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點(diǎn),,切線長的最小值為:,故選:D.9、C【解析】根據(jù)題意,依次分析選項(xiàng)中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案【詳解】根據(jù)題意,依次分析選項(xiàng):對于A,為一次函數(shù),不是偶函數(shù),不符合題意;對于B,,,為奇函數(shù),不是偶函數(shù),不符合題意;對于C,,為二次函數(shù),是偶函數(shù)且在上是減函數(shù),符合題意;對于D,,,為奇函數(shù),不是偶函數(shù),不符合題意;故選C【點(diǎn)睛】本題考查函數(shù)的奇偶性與單調(diào)性的判定,關(guān)鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎(chǔ)題10、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時(shí),3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B11、B【解析】根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B12、B【解析】由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,從而即可求解.【詳解】解:由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以雙曲線C的離心率,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得函數(shù)的導(dǎo)數(shù),得到且,結(jié)合直線的點(diǎn)斜式方程,即可求解.【詳解】由題意,函數(shù),可得,則且,所以函數(shù)在處的切線方程為,即,即切線方程為.故答案為:.14、【解析】根據(jù)題目條件,利用模的平方可以得出答案【詳解】∵∴∴.故答案為:.15、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因?yàn)?,若時(shí),可得,故,所以,化簡得,整理得,解得或,因?yàn)椋獾?,所?故答案為:.16、##【解析】由題意可得,從而可求出的值【詳解】因?yàn)橹本€與直線相互平行,所以,解得,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意求出首項(xiàng)和公比即可得出通項(xiàng)公式;(2)可得是等差數(shù)列,利用等差數(shù)列前n項(xiàng)和公式即可求出.【詳解】解:(1)設(shè)等比數(shù)列的公比為,則,由題意得,解得,因此,;(2),則,所以,數(shù)列是等差數(shù)列,首項(xiàng),記數(shù)列前項(xiàng)和為,則.18、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點(diǎn),連接MN,利用余弦定理可求得,,的長度,進(jìn)而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當(dāng)空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,然后利用向量法求解二面角的余弦值,從而即可得答案【小問1詳解】證明:連接,設(shè)與相交于點(diǎn),連接MN,平面,在平面內(nèi),平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面內(nèi),,又,平面,又平面,平面平面;【小問2詳解】解:由(1)可知直線,,兩兩互相垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,所以,,設(shè)平面的一個(gè)法向量為,則,可??;設(shè)平面的一個(gè)法向量為,則,可取,,平面與平面所成二面角的正弦值為19、(1),;(2)【解析】(1)根據(jù)題意以m表示出,由即可求出,進(jìn)而求出;(2)根據(jù)等差數(shù)列和等比數(shù)列的通項(xiàng)公式求出,再利用錯(cuò)位相減法即可求出.【詳解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,當(dāng)時(shí),,又,,滿足,,,兩式相減得,.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯(cuò)位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項(xiàng)相消法求和.20、(1)1(2)證明見解析【解析】(1)根據(jù)點(diǎn)在橢圓E上建立方程,結(jié)合,然后解出方程即可;(2)聯(lián)立直線與橢圓的方程,表示出直線與,求得交點(diǎn)的坐標(biāo),再分別表示出直線和的斜率并作差,通過韋達(dá)定理證明直線和的斜率相等即可.【小問1詳解】由點(diǎn)在橢圓E上,得:又,即解得:【小問2詳解】依題意,得,且直線l與x軸不會平行設(shè)直線l的方程為,,由方程組消去x可得:則有:,且直線的方程為,直線的方程為由方程組可得:設(shè)直線的斜率分別是,則有:可得:又可得:故【點(diǎn)睛】(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程時(shí),務(wù)必考慮全面,不要忽略直線斜率為或不存在等特殊情形請考生在第22-23題中任選一題作答,如果多做,則按所做的第一題計(jì)分21、(1);(2)證明見解析.【解析】(1)用待定系數(shù)法求出橢圓的方程;(2)設(shè)直線MN的方程為x=my+1,設(shè),用“設(shè)而不求法”表示出.由直線AM的方程為,直線BN的方程為,聯(lián)立,解得:,即可證明直線AM與BN的交點(diǎn)在直線上.【小問1詳解】由題意可得:,解得:,所以C的方程為.【小問2詳解】由(1)得A(-2,0),B(2,0),F2(1,0),設(shè)直線MN的方程為x=my+1.設(shè),由,消去y得:,所以.所以.因?yàn)橹本€AM的方程為,直線BN的方程為,二者聯(lián)立,有,所以,解得:,直線AM與BN的交點(diǎn)在直線上.【點(diǎn)睛】(1)待定系數(shù)法可以求二次曲線的標(biāo)準(zhǔn)方程;(2)"設(shè)而不求"是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 隱形技術(shù)的定義
- 職業(yè)健康監(jiān)護(hù)策略研究
- 韶關(guān)廣東韶關(guān)高新區(qū)工會聯(lián)合會招聘社會化工會工作者筆試歷年參考題庫附帶答案詳解
- 西雙版納云南西雙版納州第二中學(xué)招聘公益性崗位人員(2人)筆試歷年參考題庫附帶答案詳解
- 玉溪云南玉溪市江川區(qū)醫(yī)共體總醫(yī)院招聘編制外人員筆試歷年參考題庫附帶答案詳解
- 深圳2025年廣東深圳市教育局遴選直屬事業(yè)單位(學(xué)校)領(lǐng)導(dǎo)人員5人筆試歷年參考題庫附帶答案詳解
- 河池2025年廣西河池市金城江區(qū)第六初級中學(xué)招聘筆試歷年參考題庫附帶答案詳解
- 巴中2025年四川巴中事業(yè)單位招聘276人筆試歷年參考題庫附帶答案詳解
- 寧波浙江寧波市北侖職業(yè)高級中學(xué)編外用工招聘25人筆試歷年參考題庫附帶答案詳解
- 哈爾濱2025年黑龍江哈爾濱延壽縣公費(fèi)師范生招聘72人入職筆試歷年參考題庫附帶答案詳解
- (完整)鋼筋混凝土擋土墻專項(xiàng)施工方案
- 湖南省長沙市2025年新高考適應(yīng)性一模考試-化學(xué)試卷(含答案)
- 支氣管封堵器課件
- 警務(wù)英語教學(xué)課件
- 《醫(yī)學(xué)影像診斷報(bào)告書寫指南》(2025版)
- 旋挖鉆機(jī)進(jìn)場安全培訓(xùn)課件
- 2025年高純石墨碳材行業(yè)研究報(bào)告及未來行業(yè)發(fā)展趨勢預(yù)測
- 2025至2030中國超高鎳正極材料市場經(jīng)營格局與未來銷售前景預(yù)測報(bào)告
- 2025至2030中國立體定向儀行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢及投資規(guī)劃深度研究報(bào)告
- 代辦煙花爆竹經(jīng)營許可證協(xié)議合同
- DB44∕T 2328-2021 慢性腎臟病中醫(yī)健康管理技術(shù)規(guī)范
評論
0/150
提交評論