湖南省株洲市醴陵一中2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
湖南省株洲市醴陵一中2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
湖南省株洲市醴陵一中2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
湖南省株洲市醴陵一中2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
湖南省株洲市醴陵一中2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省株洲市醴陵一中2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F是雙曲線C:的一個焦點,點P在C的漸近線上,O是坐標(biāo)原點,,則的面積為()A.1 B.C. D.2.設(shè)F為雙曲線C:(a>0,b>0)的右焦點,O為坐標(biāo)原點,以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.3.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.4.記Sn為等差數(shù)列{an}的前n項和,給出下列4個條件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一個條件不成立,則該條件為()A.① B.②C.③ D.④5.已知數(shù)列滿足,,則的最小值為()A. B.C. D.6.已知曲線,下列命題錯誤的是()A.若,則是橢圓,其焦點在軸上B.若,則是圓,其半徑為C.若,則是雙曲線,其漸近線方程為D.若,,為上任意一點,,為曲線的兩個焦點,則7.已知函數(shù),則曲線在點處的切線與坐標(biāo)軸圍成的三角形的面積是()A B.C. D.8.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直9.各項均為正數(shù)的等比數(shù)列的前項和為,若,,則()A. B.C. D.10.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.11.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.1612.已知是邊長為6的等邊所在平面外一點,,當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、是橢圓的兩個焦點,點在橢圓上,且,,則橢圓離心率是___________14.已知直線:和:,且,則實數(shù)__________,兩直線與之間的距離為__________15.不等式的解集是___________.16.關(guān)于曲線,則以下結(jié)論正確的個數(shù)有______個①曲線C關(guān)于原點對稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點;④曲線C與曲線有4個交點,這4點構(gòu)成正方形三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長為米表示劣弧與弦所圍成陰影部分的面積.(1)請寫出函數(shù)表達式;(2)用求導(dǎo)的方法證明.18.(12分)已知,(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;(2)當(dāng)時,,求實數(shù)a的取值范圍19.(12分)將離心率相同的兩個橢圓如下放置,可以形成一個對稱性很強的幾何圖形,現(xiàn)已知.(1)若在第一象限內(nèi)公共點的橫坐標(biāo)為1,求的標(biāo)準(zhǔn)方程;(2)假設(shè)一條斜率為正的直線與依次切于兩點,與軸正半軸交于點,試求的最大值及此時的標(biāo)準(zhǔn)方程.20.(12分)等差數(shù)列中,,(1)求數(shù)列的通項公式;(2)若滿足數(shù)列為遞增數(shù)列,求數(shù)列前項和21.(12分)直線經(jīng)過兩直線和的交點(1)若直線與直線平行,求直線的方程;(2)若點到直線的距離為,求直線的方程22.(10分)進入11月份,大學(xué)強基計劃開始報名,某“五校聯(lián)盟”統(tǒng)一對五校高三學(xué)生進行綜合素質(zhì)測試,在所有參加測試的學(xué)生中隨機抽取了部分學(xué)生的成績,得到如圖2所示的成績頻率分布直方圖:(1)估計五校學(xué)生綜合素質(zhì)成績的平均值和中位數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點值表示)(2)某校決定從本校綜合素質(zhì)成績排名前6名同學(xué)中,推薦3人參加強基計劃考試,若已知6名同學(xué)中有4名理科生,2名文科生,試求這3人中含文科生的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)給定條件求出,再利用余弦定理求出即可計算作答.【詳解】雙曲線C:中,,其漸近線,它與x軸的夾角為,即,在中,,由余弦定理得:,即,整理得:,解得,所以面積為.故選:B2、A【解析】準(zhǔn)確畫圖,由圖形對稱性得出P點坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率【詳解】設(shè)與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心,又點在圓上,,即,故選A【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習(xí),才能在解決此類問題時事半功倍,信手拈來3、D【解析】先設(shè),代入化簡,由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因為為純虛數(shù),所以,解得,所以的虛部為:.故選:D.4、B【解析】根據(jù)等差數(shù)列通項公式及求和公式的基本量計算,對比即可得出結(jié)果.【詳解】設(shè)等差數(shù)列{an}的公差為,,,,即,即.當(dāng),時,①③④均成立,②不成立.故選:B5、C【解析】采用疊加法求出,由可得,結(jié)合對勾函數(shù)性質(zhì)分析在或6取到最小值,代值運算即可求解.【詳解】因為,所以,,,,式相加可得,所以,,當(dāng)且僅當(dāng)取到,但,,所以時,當(dāng)時,,,所以的最小值為.故選:C6、D【解析】根據(jù)橢圓和雙曲線的性質(zhì)以及定義逐一判斷即可.【詳解】曲線,若,則是橢圓,其焦點在軸上,故A正確;若,則,即是圓,半徑為,故B正確;若,則是雙曲線,當(dāng),則漸近線方程為,當(dāng),則漸近線方程為,故C正確;若,,則是雙曲線,其焦點在軸上,由雙曲線的定義可知,,故D錯誤;故選:D7、B【解析】根據(jù)導(dǎo)數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B8、B【解析】通過判斷直線的方向向量與平面的法向量的關(guān)系,可得結(jié)論【詳解】因為,,所以,所以∥,因為直線的方向向量為,平面的法向量為,所以,故選:B9、D【解析】根據(jù)等比數(shù)列性質(zhì)可知,,,成等比數(shù)列,由等比中項特點可構(gòu)造方程求得,由等比數(shù)列通項公式可求得,進而得到結(jié)果.【詳解】由等比數(shù)列的性質(zhì)可得:,,,成等比數(shù)列,則,即,解得:,,,解得:.故選:D.10、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.11、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當(dāng)時,,使的正整數(shù)n的最大值為,故選:C12、C【解析】由題意分析可得,當(dāng)時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當(dāng)三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設(shè)外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由,根據(jù)橢圓的定義,求出,,再由余弦定理,根據(jù),即可列式求出離心率.【詳解】因為點在橢圓上,所以,又,所以,因,在中,由,根據(jù)余弦定理可得,解得(負(fù)值舍去)故答案為:.【點睛】本題主要考查求橢圓的離心率,屬于??碱}型.14、①.-4;②.2【解析】根據(jù)兩直線平行斜率相等求解參數(shù)即可;運用兩平行線間的距離公式計算兩直線之間的距離可得出答案.【詳解】解:直線和,,,解得;∴兩直線與間的距離是:.故答案為:;2.15、##【解析】將分式不等式等價轉(zhuǎn)化為不等式組,求解即得.【詳解】原不等式等價于,解得,故答案為:.16、2【解析】根據(jù)曲線的方程,以及曲線的對稱性、范圍,結(jié)合每個選項進行逐一分析,即可判斷.【詳解】①將方程中的分別換為,方程不變,故該曲線關(guān)于原點對稱,故正確;②因為,解得或,故,同理可得:,故錯誤;③根據(jù)②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關(guān)于的一元二次方程,故,所以方程無根,故曲線與沒有交點;綜上所述,③正確;④假設(shè)曲線C與曲線有4個交點且交點構(gòu)成正方形,根據(jù)對稱性,第一象限的交點必在上,聯(lián)立與可得:,故交點為,而此點坐標(biāo)不滿足,所以這樣的正方形不存在,故錯誤;綜上所述,正確的是①③.故答案為:.【點睛】本題考察曲線與方程中利用曲線方程研究曲線性質(zhì),處理問題的關(guān)鍵是把握由曲線方程如何研究對稱性以及范圍問題,屬困難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)由弧長公式得,根據(jù)即可求解;(2)利用導(dǎo)數(shù)判斷出在上單調(diào)遞增,即可證明.【小問1詳解】由弧長公式得,于是,【小問2詳解】cos,顯然在上單調(diào)遞增,于是.18、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再解導(dǎo)函數(shù)的不等式,即可求出函數(shù)的單調(diào)遞減區(qū)間;(2)依題意可得當(dāng)時,當(dāng)時,顯然成立,當(dāng)時只需,參變分離得到,令,,利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可求出參數(shù)的取值范圍;【小問1詳解】解:當(dāng)時定義域為,所以,令,解得或,令,解得,所以的單調(diào)遞減區(qū)間為;【小問2詳解】解:由,即,即,當(dāng)時顯然成立,當(dāng)時,只需,即,令,,則,所以在上單調(diào)遞減,所以,所以,故實數(shù)的取值范圍為.19、(1)(2);【解析】(1)設(shè),將點代入得出的標(biāo)準(zhǔn)方程;(2)聯(lián)立與直線的方程,得出兩點的坐標(biāo),進而得出,再結(jié)合導(dǎo)數(shù)得出的最大值及此時的標(biāo)準(zhǔn)方程.【小問1詳解】由題意得:在第一象限的公共點為設(shè),則有:的標(biāo)準(zhǔn)方程為:;【小問2詳解】設(shè)y=kx+m則①,則②,,,又,由①有代入①有,令,則令,在單調(diào)遞增,在單調(diào)遞減,此時,則,代入②得,綜上:的最大值2,此時.20、(1)或(2)【解析】(1)利用等差數(shù)列通項公式,可構(gòu)造方程組求得,由此可得通項公式;(2)由(1)可得,利用分組求和法,結(jié)合等差等比求和公式可得結(jié)果.【小問1詳解】設(shè)等差數(shù)列的公差為,則,解得:或,當(dāng)時,;當(dāng)時,.綜上,或【小問2詳解】由(1)當(dāng)數(shù)列為遞增數(shù)列,則,設(shè),.21、(1)(2)或【解析】(1)由題意兩立方程組,求兩直線的交點的坐標(biāo),利用兩直線平行的性質(zhì),用待定系數(shù)法求出的方程(2)分類討論直線的斜率,利用點到直線的距離公式,用點斜式求直線的方程【小問1詳解】解:由,解得,所以兩直線和的交點為當(dāng)直線與直線平行,設(shè)的方程為,把點代入求得,可得的方程為【小問2詳解】解:斜率不存在時,直線方程為,滿足點到直線的距離為5當(dāng)?shù)男甭蚀嬖跁r,設(shè)直限的方程為,即,則點到直線的距離為,求得,故的方程為,即綜上,直線的方程為或22、(1)平均值為74.6分,中位數(shù)為75分;(2).【解析】(1)利用頻率分布直方圖平均數(shù)和中位數(shù)算法直接計算即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論