版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省泉州市泉港一中2026屆數(shù)學高一上期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.全稱量詞命題“,”的否定是()A., B.,C., D.以上都不正確2.下列等式中,正確的是()A. B.C. D.3.函數(shù)的零點所在區(qū)間為()A.(0,) B.(,)C.(,1) D.(1,2)4.已知集合,集合,則()A. B.C. D.5.已知,,且,則的最小值為()A.2 B.3C.4 D.86.已知實數(shù),且,則的最小值是()A.6 B.C. D.7.若sinα=,α是第二象限角,則sin(2α+)=()A. B.C. D.8.投壺是從先秦延續(xù)至清末的漢民族傳統(tǒng)禮儀和宴飲游戲,在春秋戰(zhàn)國時期較為盛行.如圖為一幅唐朝的投壺圖,假設甲、乙、丙是唐朝的三位投壺游戲參與者,且甲、乙、丙每次投壺時,投中與不投中是等可能的.若甲、乙、丙各投壺1次,則這3人中至多有1人投中的概率為()A. B.C. D.9.某同學用二分法求方程的近似解,該同學已經(jīng)知道該方程的一個零點在之間,他用二分法操作了7次得到了方程的近似解,那么該近似解的精確度應該為A.0.1 B.0.01C.0.001 D.0.000110.函數(shù)()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值為,其圖象相鄰兩條對稱軸之間的距離為(1)求函數(shù)的解析式;(2)設,且,求的值12.已知扇形的圓心角為,扇形的面積為,則該扇形的弧長為____________.13.命題的否定是__________14.已知關于的方程在有解,則的取值范圍是________15.函數(shù)定義域為______.16.已知偶函數(shù)在單調(diào)遞減,.若,則的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系中,為坐標原點,已知兩點、在軸的正半軸上,點在軸的正半軸上.若,()求向量,夾角的正切值()問點在什么位置時,向量,夾角最大?18.化簡求值:(1)(2).19.一個半徑為2米的水輪如圖所示,其圓心O距離水面1米,已知水輪按逆時針勻速轉(zhuǎn)動,每4秒轉(zhuǎn)一圈,如果當水輪上點P從水中浮現(xiàn)時(圖中點)開始計算時間.(1)以過點O且與水面垂直的直線為y軸,過點O且平行于水輪所在平面與水面的交線的直線為x軸,建立如圖所示的直角坐標系,試將點P距離水面的高度h(單位:米)表示為時間t(單位:秒)的函數(shù);(2)在水輪轉(zhuǎn)動的任意一圈內(nèi),有多長時間點P距水面的高度超過2米?20.已知的頂點,邊上的高所在直線的方程為,邊上中線所在的直線方程為(1)求直線的方程;(2)求點的坐標.21.從某小學隨機抽取100多學生,將他們的身高(單位:)數(shù)據(jù)繪制成頻率分布直方圖(如圖).(1)求直方圖中的值;(2)試估計該小學學生的平均身高;(3)若要從身高在三組內(nèi)的學生中,用分層抽樣的方法選取24人參加一項活動,則從身高在內(nèi)的學生中選取的人數(shù)應為多少人?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)全稱量詞命題的否定是存在量詞命題,即可得出結(jié)論.【詳解】全稱量詞命題“,”的否定為“,”.故選:C.2、D【解析】按照指數(shù)對數(shù)的運算性質(zhì)依次判斷4個選項即可.【詳解】對于A,當為奇數(shù)時,,當為偶數(shù)時,,錯誤;對于B,,錯誤;對于C,,錯誤;對于D,,正確.故選:D.3、B【解析】結(jié)合函數(shù)的單調(diào)性以及零點的存在性定理求得正確答案.【詳解】在上遞減,所以,在上遞增,所以,是定義在上的減函數(shù),,所以函數(shù)的零點在區(qū)間.故選:B4、C【解析】解不等式求出集合A中的x的范圍,然后求出A的補集,再與集合B求交集即可.【詳解】集合,則集合,,故選:C.【點睛】本題考查了集合的基本運算,屬于基礎題.5、C【解析】根據(jù)條件,變形后,利用均值不等式求最值.【詳解】因為,所以.因為,,所以,當且僅當,時,等號成立,故的最小值為4.故選:C6、B【解析】構造,利用均值不等式即得解【詳解】,當且僅當,即,時等號成立故選:B【點睛】本題考查了均值不等式在最值問題中的應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算能力,屬于中檔題7、D【解析】根據(jù),求出的值,再將所求式子展開,轉(zhuǎn)化成關于和的式子,然后代值得出結(jié)果【詳解】因為且為第二象限角,根據(jù)得,,再根據(jù)二倍角公式得原式=,將,代入上式得,原式=故選D【點睛】本題考查三角函數(shù)給值求值,在已知角的取值范圍時可直接用同角公式求出正余弦值,再利用和差公式以及倍角公式將目標式轉(zhuǎn)化成關于和的式子,然后代值求解就能得出結(jié)果8、C【解析】根據(jù)題意,列出所有可能,結(jié)合古典概率,即可求解.【詳解】甲、乙、丙3人投中與否的所有情況為:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8種,其中至多有1人投中的有4種,故所求概率為故選:C.9、B【解析】令,則用計算器作出的對應值表:由表格數(shù)據(jù)知,用二分法操作次可將作為得到方程的近似解,,,近似解的精確度應該為0.01,故選B.10、A【解析】由于函數(shù)為偶函數(shù)又過(0,0),排除B,C,D,所以直接選A.【考點定位】對圖像的考查其實是對性質(zhì)的考查,注意函數(shù)的特征即可,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、(1)(2)【解析】(1)根據(jù)函數(shù)的最值求出,由相鄰兩條對稱軸之間的距離為,確定函數(shù)的周期,進而求出值;(2)由,求出,利用誘導公式結(jié)合的范圍求出,的值,即可求出結(jié)論.【小問1詳解】函數(shù)的最大值為5,所以A+1=5,即A=4∵函數(shù)圖象的相鄰兩條對稱軸之間的距離為,∴最小正周期T=π,∴ω=2故函數(shù)的解析式為.【小問2詳解】,則由,則,所以所以12、【解析】利用扇形的面積求出扇形的半徑,再帶入弧長計算公式即可得出結(jié)果.【詳解】解:由于扇形的圓心角為,扇形的面積為,則扇形的面積,解得:,此扇形所含的弧長.故答案為:.13、;【解析】根據(jù)存在量詞的命題的否定為全稱量詞命題即可得解;【詳解】解:因為命題“”為存在量詞命題,其否定為全稱量詞命題為故答案為:14、【解析】將原式化為,然后研究函數(shù)在上的值域即可【詳解】解:由,得,令,令,因為,所以,所以,即,因為,所以函數(shù)可化為,該函數(shù)在上單調(diào)遞增,所以,所以,所以,所以的取值范圍是,故答案為:15、【解析】解余弦不等式,即可得出其定義域.【詳解】由對數(shù)函數(shù)的定義知即,∴,∴函數(shù)的定義域為。故答案為:16、【解析】因為是偶函數(shù),所以不等式,又因為在上單調(diào)遞減,所以,解得.考點:本小題主要考查抽象函數(shù)的奇偶性與單調(diào)性,考查絕對值不等式的解法,熟練基礎知識是關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】分析:()設向量與軸的正半軸所成的角分別為,則向量所成的夾角為,由兩角差的正切公式可得向量夾角的正切值為;()由(1)知,利用基本不等式即可的結(jié)果.詳解:(1)由題意知,A的坐標為A(0,6),B的坐標為B(0,4),C(x,0),x>0設向量,與x軸的正半軸所成的角分別為α,β,則向量,所成的夾角為|β﹣α|=|α﹣β|,由三角函數(shù)的定義知:tanα=,tanβ=,由公式tan(α﹣β)=,得向量,的夾角的正切值等于tan(α﹣β)==,故所求向量,夾角的正切值為tan(α﹣β)=;(2)由(1)知tan(α﹣β)==≤=,所以tan(α﹣β)的最大值為時,夾角|α﹣β|的值也最大,當x=時,取得最大值成立,解得x=2,故點C在x的正半軸,距離原點為2,即點C的坐標為C(2,0)時,向量,夾角最大點睛:本題主要考查利用平面向量的夾角、兩角差的正切公式以及基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).18、(1)(2)【解析】(1)根據(jù)對數(shù)運算公式計算即可;(2)根據(jù)指數(shù)運算公式和根式的性質(zhì)運算化簡.【小問1詳解】原式【小問2詳解】原式.19、(1);(2)秒【解析】(1)設,根據(jù)題意求得、的值,以及函數(shù)的最小正周期,可求得的值,根據(jù)的大小可得出的值,由此可得出關于的函數(shù)解析式;(2)由得出,令,求得的取值范圍,進而可解不等式,可得出的取值范圍,進而得解.【詳解】解:(1)如圖所示,標出點M與點N,設,根據(jù)題意可知,,所以,根據(jù)函數(shù)的物理意義可知:,又因為函數(shù)的最小正周期為,所以,所以可得:.(2)根據(jù)題意可知,,即,當水輪轉(zhuǎn)動一圈時,,可得:,所以此時,解得:,又因為(秒),即水輪轉(zhuǎn)動任意一圈內(nèi),有秒的時間點P距水面的高度超過2米20、(1);(2)【解析】(1)由,知兩條直線的斜率乘積為-1,進而由點斜式求直線即可;(2)設,則,代入方程求解即可.試題解析:(1)∵,且直線的斜率為,∴直線的斜率為,∴直線的方程為,即(2)設,則,∴,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年電氣傳動的產(chǎn)業(yè)鏈分析與案例
- 2026春招:藥明康德筆試題及答案
- 2026年橋梁施工質(zhì)量文化建設的重要性
- 2026年建筑設備智能化變革的示范工程
- 貸款產(chǎn)品宣傳課件
- 貼磚安全培訓課件
- 貨運單位安全培訓記錄課件
- 貨車四輪定位培訓課件
- 心理健康護理技巧解析
- 醫(yī)學影像診斷與疾病監(jiān)測
- 2025包頭鐵道職業(yè)技術學院教師招聘考試試題
- 2025至2030年中國三氯甲基碳酸酯行業(yè)市場發(fā)展現(xiàn)狀及投資策略研究報告
- 不負韶華主題班會課件
- GB/T 45614-2025安全與韌性危機管理指南
- 2025年江西省新余市中考二模化學試題(含答案)
- DG∕T 149-2021 殘膜回收機標準規(guī)范
- 污水管道疏通方案
- 化學工藝過程控制與優(yōu)化試題庫
- 靈渠流域多民族交往交流交融的歷史及啟示
- 項目可行性研究報告評估咨詢管理服務方案1
- 現(xiàn)代漢語重點知識筆記詳解
評論
0/150
提交評論