湖北省恩施州2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第1頁
湖北省恩施州2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第2頁
湖北省恩施州2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第3頁
湖北省恩施州2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第4頁
湖北省恩施州2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省恩施州2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,已知正方體,點P是棱中點,設(shè)直線為a,直線為b.對于下列兩個命題:①過點P有且只有一條直線l與a、b都相交;②過點P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題2.若離散型隨機變量的所有可能取值為1,2,3,…,n,且取每一個值的概率相同,若,則n的值為()A.4 B.6C.9 D.103.下列命題中,結(jié)論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點平分的弦所在的直線方程為⑤已知過點的直線與圓的交點個數(shù)有2個.A.①③④ B.②③④C.①③⑤ D.①②⑤4.若直線與圓相切,則()A. B.或2C. D.或5.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.276.設(shè)集合,則AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}7.直線經(jīng)過兩點,那么其斜率為()A. B.C. D.8.如圖是函數(shù)的導(dǎo)數(shù)的圖象,則下面判斷正確的是()A.在內(nèi)是增函數(shù)B.在內(nèi)是增函數(shù)C.在時取得極大值D.在時取得極小值9.中,內(nèi)角A,B,C的對邊分別為a,b,c,若,則等于()A. B.C. D.10.函數(shù)的最小值是()A.3 B.4C.5 D.611.等比數(shù)列的公比為,則“”是“對于任意正整數(shù)n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件12.若數(shù)列為等比數(shù)列,且,,則()A.8 B.16C.32 D.64二、填空題:本題共4小題,每小題5分,共20分。13.若展開式的二項式系數(shù)之和是64,則展開式中的常數(shù)項的值是__________.14.若直線與圓有公共點,則b的取值范圍是_____15.如圖,拋物線上的點與軸上的點構(gòu)成等邊三角形,,,其中點在拋物線上,點的坐標為,,猜測數(shù)列的通項公式為________16.曲線在點處的切線方程為_____________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求曲線在點(e,)的切線方程;(2)求函數(shù)的單調(diào)區(qū)間.18.(12分)如圖,在直三棱柱中,,,.M為側(cè)棱的中點,連接,,CM.(1)證明:AC平面;(2)證明:平面;(3)求二面角的大小.19.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.20.(12分)已知數(shù)列的前項和是,且,等差數(shù)列中,(1)求數(shù)列的通項公式;(2)定義:記,求數(shù)列的前20項和21.(12分)一位父親在孩子出生后,每月給小孩測量一次身高,得到前7個月的數(shù)據(jù)如下表所示.月齡1234567身高(單位:厘米)52566063656870(1)求小孩前7個月的平均身高;(2)求出身高y關(guān)于月齡x的回歸直線方程(計算結(jié)果精確到整數(shù)部分);(3)利用(2)的結(jié)論預(yù)測一下8個月的時候小孩的身高參考公式:22.(10分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且是的中點.(1)求證:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】①由正方形的性質(zhì),可以延伸正方形,再利用兩條平行線確定一個平面即可;②一組鄰邊與對角面夾角相等,在平面內(nèi)繞P轉(zhuǎn)動,可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側(cè)面正方形和再延伸一個正方形和,則平面和在同一個平面內(nèi),所以過點P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因為平面,所以與與b的夾角都為,而,所以過點P,在平面內(nèi)存在一條直線,使得與與b的夾角都為,同理可得,過點P,在平面內(nèi)存在一條直線,使得與與的夾角都為;故②為真命題.故選:A2、D【解析】根據(jù)分布列即可求出【詳解】因為,所以故選:D3、C【解析】求出兩直線垂直時m值判斷①;由復(fù)合命題真值表可判斷②;化簡不等式結(jié)合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗證判斷④;判定點與圓的位置關(guān)系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點,④不正確;點在圓上,則直線與圓至少有一個公共點,而過點與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個交點,⑤正確,所以所有真命題的序號是①③⑤.故選:C4、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.5、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因為為等比數(shù)列,設(shè)公比為,則,解得,又,所以.故選:B.6、B【解析】按交集定義求解即可.【詳解】AB={2,3}故選:B7、B【解析】由兩點的斜率公式可得答案.【詳解】直線經(jīng)過兩點,則故選:B8、B【解析】根據(jù)圖象判斷的單調(diào)性,由此求得的極值點,進而確定正確選項.【詳解】由圖可知,在區(qū)間上,單調(diào)遞減;在區(qū)間上,單調(diào)遞增.所以不是的極值點,是的極大值點.所以ACD選項錯誤,B選項正確.故選:B9、A【解析】由題得,進而根據(jù)余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A10、D【解析】先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最小值【詳解】由,得,因為,所以,所以在上單調(diào)遞增,所以,故選:D11、D【解析】結(jié)合等比數(shù)列的單調(diào)性,根據(jù)充分必要條件的定義判斷【詳解】若,,則,,充分性不成立;反過來,若,,則時,必要性不成立;因此“”是“對于任意正整數(shù)n,都有”的既不充分也不必要條件.故選:D12、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)等比數(shù)列的通項公式得到,即可求出,再根據(jù)計算可得;【詳解】解:設(shè)等比數(shù)列公比為,因為、,所以,所以;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先利用展開式的二項式系數(shù)和是求出,然后即可求出二項式的常數(shù)項.【詳解】由題知展開式的二項式系數(shù)之和是,故有,可得,知當(dāng)時有.故展開式中的常數(shù)項為.故答案為:.【點睛】本題考查了利用二項式的系數(shù)和求參數(shù),求二項式的常數(shù)項,屬于基礎(chǔ)題.14、【解析】直線與圓有交點,則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數(shù)取值范圍是.故答案為:15、【解析】求出,,,,,,可猜測,利用累加法,即可求解【詳解】的方程為,代入拋物線可得,同理可得,,,,可猜測,證明:記三角形的邊長為,由題意可知,當(dāng)時,在拋物線上,可得,當(dāng)時,,兩式相減得:化簡得:,則數(shù)列是等差數(shù)列,,,,,故答案為:16、【解析】首先判定點在曲線上,然后利用導(dǎo)數(shù)的幾何意義求得答案.【詳解】由題意可知點在曲線上,而,故曲線在點處的切線斜率為,所以切線方程:,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)在單調(diào)遞減,在單調(diào)遞增【解析】(1)求出函數(shù)的導(dǎo)數(shù),求出切線的斜率,切點坐標,然后求解切線方程;(2)利用導(dǎo)函數(shù)的符號,判斷函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間即可【詳解】解:(1)由得,所以切線斜率為切點坐標為,所以切線方程為,即;(2),令,得當(dāng)時,;當(dāng)時,,∴在單調(diào)遞減,在單調(diào)遞增18、(1)證明見詳解;(2)證明見詳解;(3)【解析】小問1:由于,根據(jù)線面平行判定定理即可證明;小問2:以為原點,分別為軸建立空間坐標系,根據(jù)向量垂直關(guān)系即可證明;小問3:分別求得平面與平面的法向量,根據(jù)向量夾角公式即可求解【小問1詳解】在直三棱柱中,,且平面,平面所以AC平面;【小問2詳解】因為,故以為原點,分別為軸建立空間坐標系如圖所示:則,所以則所以又平面,平面故平面;【小問3詳解】由,得,設(shè)平面的一個法向量為則得又因為平面的一個法向量為所以所以二面角的大小為19、(1)(2)或【解析】(1)結(jié)合拋物線的定義求得,由此求得拋物線的方程.(2)設(shè),根據(jù)三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質(zhì)得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設(shè),則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.20、(1);(2)【解析】(1)利用求得遞推關(guān)系得等比數(shù)列,從而得通項公式,再由等差數(shù)列的基本時法求得通項公式;(2)根據(jù)定義求得,然后分組求和法求得和【小問1詳解】由題意,當(dāng)時,兩式相減,得,即是首項為3,公比為3的等比數(shù)列設(shè)數(shù)列的公差為,小問2詳解】由21、(1)62;(2);(3)74.【解析】(1)直接利用平均數(shù)的計算公式即可求解;(2)套公式求出b、a,求出回歸方程;(3)把x=8代入回歸方程即可求出.【小問1詳解】小孩前7個月的平均身高為.【小問2詳解】(2)設(shè)回歸直線方程是.由題中的數(shù)據(jù)可知.,..計算結(jié)果精確到整數(shù)部分,所以,于是,所以身高y關(guān)于月齡x的回歸直線方程為.【小問3詳解】由(2)知,.當(dāng)x=8時,y=3×8+50=74,所以預(yù)測8個月的時候小孩的身高為74厘米.22、(1)證明見解析(2)【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論