2026屆云南省丘北縣第二中學(xué)高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2026屆云南省丘北縣第二中學(xué)高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2026屆云南省丘北縣第二中學(xué)高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2026屆云南省丘北縣第二中學(xué)高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2026屆云南省丘北縣第二中學(xué)高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆云南省丘北縣第二中學(xué)高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若冪函數(shù)的圖象經(jīng)過點,則=A. B.C.3 D.92.已知命題,則為()A. B.C. D.3.中國茶文化博大精深,某同學(xué)在茶藝選修課中了解到,茶水的口感與茶葉類型和水的溫度有關(guān),某種綠茶用80℃左右的水泡制可使茶湯清澈明亮,營養(yǎng)也較少破壞.為了方便控制水溫,該同學(xué)聯(lián)想到牛頓提出的物體在常溫環(huán)境下溫度變化的冷卻模型:如果物體的初始溫度是℃,環(huán)境溫度是℃,則經(jīng)過分鐘后物體的溫度℃將滿足,其中是一個隨著物體與空氣的接觸狀況而定的正常數(shù).該同學(xué)通過多次測量平均值的方法得到初始溫度為100℃的水在20℃的室溫中,12分鐘以后溫度下降到50℃.則在上述條件下,℃的水應(yīng)大約冷卻()分鐘沖泡該綠茶(參考數(shù)據(jù):,)A.3 B.3.6C.4 D.4.84.為了抗擊新型冠狀病毒肺炎,保障師生安全,學(xué)校決定每天對教室進行消毒工作,已知藥物釋放過程中,室內(nèi)空氣中含藥量y()與時間t(h)成正比();藥物釋放完畢后,y與t的函數(shù)關(guān)系式為(a為常數(shù),),據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.5()以下時,學(xué)生方可進教室,則學(xué)校應(yīng)安排工作人員至少提前()分鐘進行消毒工作A.25 B.30C.45 D.605.設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面,則下列正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,,則6.下列各個關(guān)系式中,正確的是()A.={0}B.C.{3,5}≠{5,3}D.{1}{x|x2=x}7.設(shè)全集,集合,,則=()A. B.{2,5}C.{2,4} D.{4,6}8.在軸上的截距分別是,4的直線方程是A. B.C. D.9.已知是自然對數(shù)的底數(shù),函數(shù)的零點為,函數(shù)的零點為,則下列不等式中成立的是A. B.C. D.10.長方體中的8個頂點都在同一球面上,,,,則該球的表面積為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的圖象恒過點P,若點P在角的終邊上,則_________12.集合,,則__________.13.在正三角形中,是上的點,,則________14.=______15.若,則的最大值為________16.若弧度數(shù)為2的圓心角所對的弦長為2,則這個圓心角所夾扇形的面積是___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過,兩點,且圓心在直線:上.(Ⅰ)求圓的方程;(Ⅱ)若點在直線:上,過點作圓的一條切線,為切點,求切線長的最小值;(Ⅲ)已知點為,若在直線:上存在定點(不同于點),滿足對于圓上任意一點,都有為一定值,求所有滿足條件點的坐標(biāo).18.已知函數(shù)(1)求函數(shù)的定義域,并判斷函數(shù)的奇偶性;(2)對于,不等式恒成立,求實數(shù)的取值范圍19.已知函數(shù)f(x)=2sin2(x+)-2cos(x-)-5a+2(1)設(shè)t=sinx+cosx,將函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)的解析式;(2)對任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范圍20.某學(xué)校高一學(xué)生有1000名學(xué)生參加一次數(shù)學(xué)小測驗,隨機抽取200名學(xué)生的測驗成績得如圖所示的頻率分布直方圖:(1)求該學(xué)校高一學(xué)生隨機抽取的200名學(xué)生的數(shù)學(xué)平均成績和標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值做代表);(2)試估計該校高一學(xué)生在這一次的數(shù)學(xué)測驗成績在區(qū)間之內(nèi)的概率是多少?測驗成績在區(qū)間之外有多少位學(xué)生?(參考數(shù)據(jù):)21.集合A={x|},B={x|};(1)用區(qū)間表示集合A;(2)若a>0,b為(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用待定系數(shù)法求出冪函數(shù)y=f(x)的解析式,再計算f(3)的值【詳解】設(shè)冪函數(shù)y=f(x)=xα,其圖象經(jīng)過點,∴2α,解得α,∴f(x),∴f(3)故選B【點睛】本題考查了冪函數(shù)的定義與應(yīng)用問題,是基礎(chǔ)題2、D【解析】由全稱命題的否定為存在命題,分析即得解【詳解】由題意,命題由全稱命題的否定為存在命題,可得:為故選:D3、B【解析】根據(jù)題意求出k的值,再將θ=80℃,=100℃,=20℃代入即可求得t的值.【詳解】由題可知:,沖泡綠茶時水溫為80℃,故.故選:B.4、C【解析】計算函數(shù)解析式,取計算得到答案.【詳解】∵函數(shù)圖像過點,∴,當(dāng)時,取,解得小時分鐘,所以學(xué)校應(yīng)安排工作人員至少提前45分鐘進行消毒工作.故選:C.5、D【解析】由空間中直線、平面的位置關(guān)系逐一判斷即可得解.【詳解】解:由a,b是兩條不同的直線,α,β是兩個不同的平面,知:在A中,若,,則或,故A錯誤;在B中,若,,則,故B錯誤;在C中,若,,則或,故C錯誤;在D中,若,,,則由面面垂直的判定定理得,故D正確;故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,屬中檔題6、D【解析】由空集的定義知={0}不正確,A不正確;集合表示有理數(shù)集,而不是有理數(shù),所以B不正確;由集合元素的無序性知{3,5}={5,3},所以C不正確;{x|x2=x}={0,1},所以{1}{0,1},所以D正確.故選D.7、D【解析】由補集、交集的定義,運算即可得解.【詳解】因為,,所以,又,所以.故選:D.8、B【解析】根據(jù)直線方程的截距式寫出直線方程即可【詳解】根據(jù)直線方程的截距式寫出直線方程,化簡得,故選B.【點睛】本題考查直線的截距式方程,屬于基礎(chǔ)題9、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函數(shù)y=ex,y=lnx,y=2﹣x的圖象如圖:∵函數(shù)f(x)=ex+x﹣2的零點為a,函數(shù)g(x)=lnx+x﹣2的零點為b,∴y=ex與y=2﹣x的交點的橫坐標(biāo)為a,y=lnx與y=2﹣x交點的橫坐標(biāo)為b,由圖象知a<1<b,故選A考點:函數(shù)的零點10、B【解析】根據(jù)題意,求得長方體的體對角線,即為該球的直徑,再用球的表面積公式即可求得結(jié)果.【詳解】由已知,該球是長方體的外接球,故,所以長方體的外接球半徑,故外接球的表面積為.故選:.【點睛】本題考查長方體的外接球問題,涉及球表面積公式的使用,屬綜合基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由對數(shù)函數(shù)的性質(zhì)可得點的坐標(biāo),由三角函數(shù)的定義求得與的值,再由正弦的二倍角公式即可求解.【詳解】易知恒過點,即,因為點在角的終邊上,所以,所以,,所以,故答案為:.12、【解析】通過求二次函數(shù)的值域化簡集合,再根據(jù)交集的概念運算可得答案.【詳解】因為,,所以.故答案為:【點睛】本題考查了交集的運算,考查了求二次函數(shù)的值域,搞清楚集合中元素符號是解題關(guān)鍵,屬于基礎(chǔ)題.13、【解析】根據(jù)正三角形的性質(zhì)以及向量的數(shù)量積的定義式,結(jié)合向量的特點,可以確定,故答案為考點:平面向量基本定理,向量的數(shù)量積,正三角形的性質(zhì)14、【解析】由題意結(jié)合指數(shù)的運算法則和對數(shù)的運算法則整理計算即可求得最終結(jié)果.【詳解】原式=3+-2=.故答案為點睛】本題考查了指數(shù)與對數(shù)運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題15、【解析】化簡,根據(jù)題意結(jié)合基本不等式,取得,即可求解.【詳解】由題意,實數(shù),且,又由,當(dāng)且僅當(dāng)時,即時,等號成立,所以,即的最大值為.故答案為:.16、【解析】根據(jù)所給弦長,圓心角求出所在圓的半徑,利用扇形面積公式求解.【詳解】由弦長為2,圓心角為2可知扇形所在圓的半徑,故,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根據(jù)題意,設(shè)出圓的標(biāo)準(zhǔn)方程,代入條件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小時,垂直于直線,據(jù)此可得結(jié)論;(Ⅲ)設(shè),,列出相應(yīng)等式化簡,再利用點的任意性,列出方程組求解即可.【詳解】(Ⅰ)設(shè)圓的方程為,根據(jù)題意有,解得,所以圓的方程為;(Ⅱ)由勾股定理得,即,所以要求的最小值,即求的最小值,而當(dāng)垂直于直線時,最小,此時,所以的最小值為;(Ⅲ)設(shè),滿足,假設(shè)的定值為,則,化簡得,因為對于圓上任意一點上式都成立,所以,解得(舍),因此滿足條件點的坐標(biāo)為.【點睛】本題涉及圓與直線的綜合應(yīng)用,利用了數(shù)形結(jié)合等思想,考查了學(xué)生分析解決問題的能力,綜合性較強.在答題時要注意:①線外一點到線上一點的距離中,垂線段最短;②解決任意性問題的關(guān)鍵是令含參部分的系數(shù)為0,最常見的就是過定點問題.18、(1)的定義域為,奇函數(shù);(2).【解析】(1)由求定義域,再利用奇偶性的定義判斷其奇偶性;(2)將對于,不等式恒成立,利用對數(shù)函數(shù)的單調(diào)性轉(zhuǎn)化為對于,不等式恒成立求解.【小問1詳解】解:由函數(shù),得,即,解得或,所以函數(shù)的定義域為,關(guān)于原點對稱,又,所以奇函數(shù);【小問2詳解】因為對于,不等式恒成立,所以對于,不等式恒成立,所以對于,不等式恒成立,所以對于,不等式恒成立,令,則在上遞增,所以,所以.19、(1),;(2)【解析】:(1)首先由兩角和的正弦公式可得,進而即可求出的取值范圍;接下來對已知的函數(shù)利用進行表示;對于(2),首先由的取值范圍,求出的取值范圍,再對已知進行恒等變形可得在區(qū)間上恒成立,據(jù)此即可得到關(guān)于的不等式,解不等式即可求出的取值范圍.試題解析:(1),因為,所以,其中,即,.(2)由(1)知,當(dāng)時,,又在區(qū)間上單調(diào)遞增,所以,從而,要使不等式在區(qū)間上恒成立,只要,解得:.點晴:本題考查是求函數(shù)的解析式及不等式恒成立問題.(1)首先,可求出的取值范圍;接下來對已知的函數(shù)利用進行表示;(2)先求二次函數(shù),再解不等式.20、(1)平均數(shù),樣本標(biāo)準(zhǔn)差.(2)概率為0.9356,全校測驗成績在區(qū)間之外約有64(人)【解析】(1)根據(jù)頻率分布直方圖中平均數(shù)小矩形底邊中點乘以小矩形的面積之和;利用方差公式可求方差,進而可求標(biāo)準(zhǔn)差.(2)由(1)知,由頻率分布直方圖求出的概率即可求解.【詳解】(1)數(shù)學(xué)成績的樣本平均數(shù)為:,數(shù)學(xué)成績的樣本方差為:.所以估計這批產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù),樣本標(biāo)準(zhǔn)差.(2)由(1)知,則,所以(人)所以估計該學(xué)校在這一次的數(shù)學(xué)測驗中成績在區(qū)間之內(nèi)的概率為0.9356,全校測驗成績在區(qū)間之外約有64(人).【點睛】本題考查了頻率分布直方圖,根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)特征,需掌握公式,屬于基礎(chǔ)題.21、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,將b代入并因式分解,即可得解;(3)由題意知A?B,對a分類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論