版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆重慶市涪陵實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對(duì)任意,,都有,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.函數(shù)在的圖像大致為A. B. C. D.3.已知函數(shù),則()A. B. C. D.4.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長(zhǎng)度的集合,則()A.B.C.D.5.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點(diǎn)F的坐標(biāo)為(c,0),點(diǎn)A是第一象限內(nèi)雙曲線漸近線上的一點(diǎn),O為坐標(biāo)原點(diǎn),滿足|OA|=A.2 B.2 C.2336.如圖所示,矩形的對(duì)角線相交于點(diǎn),為的中點(diǎn),若,則等于().A. B. C. D.7.已知定點(diǎn)都在平面內(nèi),定點(diǎn)是內(nèi)異于的動(dòng)點(diǎn),且,那么動(dòng)點(diǎn)在平面內(nèi)的軌跡是()A.圓,但要去掉兩個(gè)點(diǎn) B.橢圓,但要去掉兩個(gè)點(diǎn)C.雙曲線,但要去掉兩個(gè)點(diǎn) D.拋物線,但要去掉兩個(gè)點(diǎn)8.已知復(fù)數(shù)滿足,則()A. B. C. D.9.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.10.博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車(chē),等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車(chē)方案.方案一:不乘坐第一輛車(chē),若第二輛車(chē)的車(chē)序號(hào)大于第一輛車(chē)的車(chē)序號(hào),就乘坐此車(chē),否則乘坐第三輛車(chē);方案二:直接乘坐第一輛車(chē).記方案一與方案二坐到“3號(hào)”車(chē)的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P211.已知向量,,若,則()A. B. C.-8 D.812.雙曲線的漸近線方程是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則展開(kāi)式的系數(shù)為_(kāi)_________.14.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.15.拋物線上到其焦點(diǎn)距離為5的點(diǎn)有_______個(gè).16.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說(shuō)明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.18.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.19.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實(shí)數(shù),且,證明:.20.(12分)已知圓M:及定點(diǎn),點(diǎn)A是圓M上的動(dòng)點(diǎn),點(diǎn)B在上,點(diǎn)G在上,且滿足,,點(diǎn)G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動(dòng)直線l與曲線C有且只有一個(gè)公共點(diǎn),與直線和分別交于P、Q兩點(diǎn).當(dāng)時(shí),求(O為坐標(biāo)原點(diǎn))面積的取值范圍.21.(12分)已知變換將平面上的點(diǎn),分別變換為點(diǎn),.設(shè)變換對(duì)應(yīng)的矩陣為.(1)求矩陣;(2)求矩陣的特征值.22.(10分)在中,角所對(duì)的邊分別是,且.(1)求;(2)若,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對(duì)稱(chēng)且在上為減函數(shù),則不等式等價(jià)于,解得的取值范圍,即可得答案.【詳解】解:因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對(duì)稱(chēng),因?yàn)閷?duì)任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實(shí)數(shù)的取值范圍是.故選:A.【點(diǎn)睛】本題考查函數(shù)的對(duì)稱(chēng)性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.2、B【解析】
由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點(diǎn)成中心對(duì)稱(chēng),排除選項(xiàng)C.又排除選項(xiàng)D;,排除選項(xiàng)A,故選B.【點(diǎn)睛】本題通過(guò)判斷函數(shù)的奇偶性,縮小考察范圍,通過(guò)計(jì)算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.3、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.4、D【解析】
如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點(diǎn)睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計(jì)算能力.5、C【解析】
計(jì)算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.6、A【解析】
由平面向量基本定理,化簡(jiǎn)得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡(jiǎn),所以,即,故選A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡(jiǎn)得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.7、A【解析】
根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動(dòng)點(diǎn),所以的軌跡是圓,但要去掉兩個(gè)點(diǎn)A,B故選:A【點(diǎn)睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問(wèn)題,屬于中檔題.8、A【解析】
根據(jù)復(fù)數(shù)的運(yùn)算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.9、D【解析】
根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫(huà)出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)?,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對(duì)空間想象能力要求較高,屬于中檔題.10、C【解析】
將三輛車(chē)的出車(chē)可能順序一一列出,找出符合條件的即可.【詳解】三輛車(chē)的出車(chē)順序可能為:123、132、213、231、312、321方案一坐車(chē)可能:132、213、231,所以,P1=;方案二坐車(chē)可能:312、321,所以,P1=;所以P1+P2=故選C.【點(diǎn)睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個(gè)數(shù),屬于基礎(chǔ)題.11、B【解析】
先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長(zhǎng)的運(yùn)算,屬于基礎(chǔ)題.12、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線的簡(jiǎn)單性質(zhì)的合理運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據(jù)定積分求出的值,再用二項(xiàng)展開(kāi)式公式即可求解.【詳解】因?yàn)樗缘耐?xiàng)公式為當(dāng)時(shí),當(dāng)時(shí),故展開(kāi)式中的系數(shù)為故答案為:【點(diǎn)睛】此題考查定積分公式,二項(xiàng)展開(kāi)式公式等知識(shí)點(diǎn),屬于簡(jiǎn)單題目.14、【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.15、2【解析】
設(shè)符合條件的點(diǎn),由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點(diǎn),則,所以符合條件的點(diǎn)有2個(gè).故答案為:2【點(diǎn)睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.16、【解析】
利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡(jiǎn)求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),表示圓心為,半徑為的圓;(2)【解析】
(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.(2)直線方程為,計(jì)算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡(jiǎn)得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,直線和圓的距離的最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.18、(1)證明見(jiàn)解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據(jù)0<xy<1時(shí),即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當(dāng)且僅當(dāng)x=y(tǒng)=z時(shí)取等號(hào).又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當(dāng)且僅當(dāng)x=y(tǒng)=z=1時(shí)取等號(hào),∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點(diǎn)睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬中檔題.19、(1)(2)證明見(jiàn)解析【解析】
(1)分類(lèi)討論,去絕對(duì)值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡(jiǎn)后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以當(dāng)時(shí),取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)椋?,為正?shí)數(shù),所以.當(dāng)且僅當(dāng),即,,時(shí)取等號(hào),所以.【點(diǎn)睛】本題考查絕對(duì)值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類(lèi)討論思想,屬于中檔題.20、(1);(2).【解析】
(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達(dá)定理化簡(jiǎn)即可求范圍.【詳解】(1)為的中點(diǎn),且是線段的中垂線,,又,∴點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,設(shè)橢圓方程為(),則,,,所以曲線C的方程為.(2)設(shè)直線l:(),由消去y,可得.因?yàn)橹本€l總與橢圓C有且只有一個(gè)公共點(diǎn),所以,.①又由可得;同理可得.由原點(diǎn)O到直線的距離為和,可得.②將①代入②得,當(dāng)時(shí),,綜上,面積的取值范圍是.【點(diǎn)睛】此題考查了軌跡和直線與曲線相交問(wèn)題,軌跡通過(guò)已知條件找到幾何關(guān)系從而判斷軌跡,直線與曲線相交一般聯(lián)立設(shè)而不求韋達(dá)定理進(jìn)行求解即可,屬于一般性題目.21、(1)(2)1或6【解析】
(1)設(shè),根
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鉗工比賽考試題及答案
- 氮質(zhì)血癥的護(hù)理觀察
- 《GAT 1314-2016法庭科學(xué)紙張纖維組成的檢驗(yàn)規(guī)范》專(zhuān)題研究報(bào)告
- 2026 年初中英語(yǔ)《冠詞》專(zhuān)項(xiàng)練習(xí)與答案 (100 題)
- 2026年深圳中考語(yǔ)文考綱解讀精練試卷(附答案可下載)
- 2026年深圳中考數(shù)學(xué)模塊通關(guān)檢測(cè)試卷(附答案可下載)
- 初級(jí)報(bào)名官方題庫(kù)及答案
- 藥品防疫知識(shí)題庫(kù)及答案
- 2026年人教版英語(yǔ)高一下冊(cè)期末質(zhì)量檢測(cè)卷(附答案解析)
- 2026年人教版道德與法治九年級(jí)下冊(cè)期末質(zhì)量檢測(cè)卷(附答案解析)
- 2022版義務(wù)教育(物理)課程標(biāo)準(zhǔn)(附課標(biāo)解讀)
- 肺結(jié)核患者合并呼吸衰竭的護(hù)理查房課件
- 井噴失控事故案例教育-井筒工程處
- 地源熱泵施工方案
- GB/T 16947-2009螺旋彈簧疲勞試驗(yàn)規(guī)范
- 硒功能與作用-課件
- 《英語(yǔ)教師職業(yè)技能訓(xùn)練簡(jiǎn)明教程》全冊(cè)配套優(yōu)質(zhì)教學(xué)課件
- PKPM結(jié)果分析限值規(guī)范要求和調(diào)整方法(自動(dòng)版)
- 同步工程的內(nèi)涵、導(dǎo)入和效果
- 喪假證明模板
- 勘察單位質(zhì)量行為檢查表
評(píng)論
0/150
提交評(píng)論