版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海民辦協(xié)和雙語學(xué)校八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案一、壓軸題1.對(duì)定義一種新運(yùn)算,規(guī)定:(其中均為非零常數(shù)).例如:.(1)已知.①求的值;②若關(guān)于的不等式組恰好有3個(gè)整數(shù)解,求的取值范圍;(2)當(dāng)時(shí),對(duì)任意有理數(shù)都成立,請(qǐng)直接寫出滿足的關(guān)系式.學(xué)習(xí)參考:①,即單項(xiàng)式乘以多項(xiàng)式就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的結(jié)果相加;②,即多項(xiàng)式乘以多項(xiàng)式就是用一個(gè)多項(xiàng)式的每一項(xiàng)去乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的結(jié)果相加.解析:(1)①;②42≤a<54;(2)m=2n【解析】【分析】(1)①構(gòu)建方程組即可解決問題;②根據(jù)不等式即可解決問題;(2)利用恒等式的性質(zhì),根據(jù)關(guān)系式即可解決問題.【詳解】解:(1)①由題意得,解得,②由題意得,解不等式①得p>-1.解不等式②得p≤,∴-1<p≤,∵恰好有3個(gè)整數(shù)解,∴2≤<3.∴42≤a<54;(2)由題意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵對(duì)任意有理數(shù)x,y都成立,∴m=2n.【點(diǎn)睛】本題考查一元一次不等式、二元一次方程組、恒等式等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.2.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.解析:(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【解析】【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過對(duì)的計(jì)算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.3.(1)發(fā)現(xiàn):如圖1,的內(nèi)角的平分線和外角的平分線相交于點(diǎn)。①當(dāng)時(shí),則②當(dāng)時(shí),求的度數(shù)(用含的代數(shù)式表示)﹔(2)應(yīng)用:如圖2,直線與直線垂直相交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),延長(zhǎng)至,已知的角平分線與的角平分線所在的直線相交于,在中,如果一個(gè)角是另一個(gè)角的倍,請(qǐng)直接寫出的度數(shù).解析:(1)①25°;②;(2).【解析】【分析】(1)①利用外角和性質(zhì)∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,再利用角平分線的定義進(jìn)行等量代換即可;②與①同理可得;(2)根據(jù)題意分情況進(jìn)行討論,用到(1)的結(jié)論計(jì)算即可【詳解】(1)①∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,∵OB、OC分別平分∠ABC、∠ACD,∴∠ACD=2∠OCD,∠ABC=2∠OBC,∴2∠OCD=2∠OBC+∠A,∴∠A=2∠BOC,∵∠A=50°,∴∠BOC=∠A=25°,故填:25°;②,且平分平分(2)的角平分線與的角平分線所在的直線相交于,符合題意的情況有兩種:①根據(jù)(1)可知:②根據(jù)(1)可知:【點(diǎn)睛】本題考查三角形外角和的性質(zhì)、角平分線的定義,利用分類討論的數(shù)學(xué)思想是關(guān)鍵.4.已知:MN∥PQ,點(diǎn)A,B分別在MN,PQ上,點(diǎn)C為MN,PQ之間的一點(diǎn),連接CA,CB.(1)如圖1,求證:∠C=∠MAC+∠PBC;(2)如圖2,AD,BD,AE,BE分別為∠MAC,∠PBC,∠CAN,∠CBQ的角平分線,求證:∠D+∠E=180°;(3)在(2)的條件下,如圖3,過點(diǎn)D作DA的垂線交PQ于點(diǎn)G,點(diǎn)F在PQ上,∠FDA=2∠FDB,F(xiàn)D的延長(zhǎng)線交EA的延長(zhǎng)線于點(diǎn)H,若3∠C=4∠E,猜想∠H與∠GDB的倍數(shù)關(guān)系并證明.解析:(1)見解析;(2)見解析;(3)猜想:∠H=3∠GDB,證明見解析.【解析】【分析】(1)作輔助線:過C作EF∥MN,根據(jù)平行的傳遞性可知這三條直線兩兩平行,由平行線的性質(zhì)得到內(nèi)錯(cuò)角相等∠MAC=∠ACF,∠BCF=∠PBC,再進(jìn)行角的加和即可得出結(jié)論;(2)根據(jù)角平分線線定理得知,利用平角為180°得到∠DAE=90°,同理得,再根據(jù)四邊形內(nèi)角和180°,得出結(jié)論;(3)由(1)(2)中的結(jié)論進(jìn)行等量代換得到3∠ADB=2∠E,并且兩角的和為180°,由此得到兩個(gè)角的度數(shù)分別為72°和108°,利用角的和與差得到∠HDA=36°,∠H=54°,由此得到倍數(shù)關(guān)系.【詳解】(1)如圖:過C作EF∥MN,∵M(jìn)N∥PQ,∴MN∥EF∥PQ,∴∠MAC=∠ACF,∠BCF=∠PBC,∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC.(2)∵AD,AE分別為∠MAC,∠CAN的角平分線,∴,∴,于是∠DAE=90°同理可得:,由(1)可得:∵.(3)猜想:∠H=3∠GDB.理由如下:由(1)可知:,∵3∠C=4∠E,∴6∠ADB=4∠E,∴3∠ADB=2∠E,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG⊥DA,∴∠GDB=18°,∵∠FDA=2∠FDB,∴∠ADF=144°,∴∠HDA=36°,∵DA⊥AE,∴∠H=54°,∴∠H=3∠GDB.【點(diǎn)睛】考查平行線中角度的關(guān)系,學(xué)生要熟悉掌握平行線的性質(zhì)以及角平分線定理,結(jié)合角的和與差進(jìn)行計(jì)算,本題的關(guān)鍵是平行線的性質(zhì).5.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點(diǎn)D.求∠BDC的大小(用含α的代數(shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE的平分線交于點(diǎn)F,求∠BFC的大?。ㄓ煤恋拇鷶?shù)式表示);(3)在(2)的條件下,將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∠GBC的平分線與∠GCB的平分線交于點(diǎn)M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).解析:(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.【解析】【分析】(1)由三角形內(nèi)角和可求∠ABC+∠ACB=180°﹣α,由角平分線的性質(zhì)可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的內(nèi)角和定理可求解;(2)由角平分線的性質(zhì)可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性質(zhì)可求解;(3)由折疊的性質(zhì)可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.【詳解】解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠BCD=∠ACB,∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;(2)∵∠ABC的平分線與∠ACE的平分線交于點(diǎn)F,∴∠FBC=∠ABC,∠FCE=∠ACE,∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,∴∠BFC=∠A=;(3)∵∠GBC的平分線與∠GCB的平分線交于點(diǎn)M,∴方法同(1)可得∠BMC=90°+,∵將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∴∠G=∠BFC=,∴∠BMC=90°+.【點(diǎn)睛】此題考查三角形的內(nèi)角和定理,三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和,角平分線的性質(zhì)定理,折疊的性質(zhì).6.如圖,在中,,,點(diǎn)D在邊BC上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)重合),連接AD,作,DE交邊AC于點(diǎn)E.(1)當(dāng)時(shí),,(2)當(dāng)DC等于多少時(shí),,請(qǐng)說明理由;(3)在點(diǎn)D的運(yùn)動(dòng)過程中,的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出的度數(shù);若不可以,請(qǐng)說明理由.解析:(1)30,100;(2),見解析;(3)可以,或【解析】【分析】(1)根據(jù)平角的定義,可求出∠EDC的度數(shù),根據(jù)三角形內(nèi)和定理,即可求出∠DEC;(2)當(dāng)AB=DC時(shí),利用AAS可證明ΔABD?ΔDCE,即可得出AB=DC=3;(3)假設(shè)ΔADE是等腰三角形,分為三種情況討論:①當(dāng)DA=DE時(shí),求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內(nèi)角和定理求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠BDA即可;②當(dāng)AD=AE時(shí),∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時(shí)不符合;③當(dāng)EA=ED時(shí),求出∠DAC,求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ADB.【詳解】(1)在△BAD中,∵∠B=50°,∠BDA=100°,∴,.故答案為,.(2)當(dāng)時(shí),,理由如下:∵,∴∵,∴∵∴在和中∴(3)可以,理由如下:∵,∴分三種情況討論:①當(dāng)時(shí),∵,∴∴∵∴②當(dāng)時(shí),∵∴又∵∴∴點(diǎn)D與點(diǎn)B重合,不合題意.③當(dāng)時(shí),∴∵∴綜上所述,當(dāng)?shù)亩葦?shù)為或時(shí),是等腰三角形.【點(diǎn)睛】本題考查的是等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理、靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.7.探索發(fā)現(xiàn):……根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問題:(1)=,=;(2)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:(3)利用規(guī)律解方程:解析:(1);(2);(3)見解析.【解析】【分析】(1)根據(jù)簡(jiǎn)單的分式可得,相鄰兩個(gè)數(shù)的積的倒數(shù)等于它們的倒數(shù)之差,即可得到和(2)根據(jù)(1)規(guī)律將乘法寫成減法的形式,可以觀察出前一項(xiàng)的減數(shù)等于后一項(xiàng)的被減數(shù),因此可得它們的和.(3)首先利用(2)的和的結(jié)果將左邊化簡(jiǎn),再利用分式方程的解法求解即可.【詳解】解:(1),;故答案為(2)原式=;(3)已知等式整理得:所以,原方程即:,方程的兩邊同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,檢驗(yàn):把x=3代入x(x+5)=24≠0,∴原方程的解為:x=3.【點(diǎn)睛】本題主要考查學(xué)生的歸納總結(jié)能力,關(guān)鍵在于根據(jù)簡(jiǎn)單的數(shù)的運(yùn)算尋找規(guī)律,是考試的熱點(diǎn).8.已知:如圖1,直線,EF分別交AB,CD于E,F(xiàn)兩點(diǎn),,的平分線相交于點(diǎn)K.(1)求的度數(shù);(2)如圖2,,的平分線相交于點(diǎn),問與的度數(shù)是否存在某種特定的等量關(guān)系?寫出結(jié)論并證明;(3)在圖2中作,的平分線相交于點(diǎn),作,的平分線相交于點(diǎn),依此類推,作,的平分線相交于點(diǎn),請(qǐng)用含的n式子表示的度數(shù).(直接寫出答案,不必寫解答過程)解析:(1);(2),證明見解析;(3)【解析】【分析】(1)過作KG∥AB,交于,證出∥KG,得到,,根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)得到,即可得到答案;(2)根據(jù)角平分線的性質(zhì)得到,,根據(jù)求出,根據(jù)求出答案;(3)根據(jù)(2)得到規(guī)律解答即可.【詳解】(1)過作KG∥AB,交于,∵,∴∥KG,,,,分別為與的平分線,,,∵,,,,則;(2),理由為:,的平分線相交于點(diǎn),,,,即,,,,;(3)由(2)知;同理可得=,∴.【點(diǎn)睛】此題考查平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等;平行公理的推論:平行于同一直線的兩直線平行;角平分線的性質(zhì);(3)是難點(diǎn),注意總結(jié)前兩問的做題思路得到規(guī)律進(jìn)行解答.9.如圖1.在△ABC中,∠ACB=90°,AC=BC=10,直線DE經(jīng)過點(diǎn)C,過點(diǎn)A,B分別作AD⊥DE,BE⊥DE,垂足分別為點(diǎn)D和E,AD=8,BE=6.(1)①求證:△ADC≌△CEB;②求DE的長(zhǎng);(2)如圖2,點(diǎn)M以3個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)C出發(fā)沿著邊CA運(yùn)動(dòng),到終點(diǎn)A,點(diǎn)N以8個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)B出發(fā)沿著線BC—CA運(yùn)動(dòng),到終點(diǎn)A.M,N兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒(t>0),當(dāng)點(diǎn)N到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),過點(diǎn)M作PM⊥DE于點(diǎn)P,過點(diǎn)N作QN⊥DE于點(diǎn)Q;①當(dāng)點(diǎn)N在線段CA上時(shí),用含有t的代數(shù)式表示線段CN的長(zhǎng)度;②當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)N重合;③當(dāng)△PCM與△QCN全等時(shí),則t=.解析:(1)①證明見解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先證明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性質(zhì)得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①當(dāng)點(diǎn)N在線段CA上時(shí),根據(jù)CN=CN?BC即可得出答案;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得t=2即可;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,則CM=CN,得3t=10?8t,解得t=1011;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,則3t=8t?10,解得t=2;即可得出答案.【詳解】(1)①證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①當(dāng)點(diǎn)N在線段CA上時(shí),如圖3所示:CN=CN?BC=8t?10;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得:t=2,∴當(dāng)t為2秒時(shí),點(diǎn)M與點(diǎn)N重合;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,∴CM=CN,∴3t=10?8t,解得:t=;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,點(diǎn)M與N重合,CM=CN,則3t=8t?10,解得:t=2;綜上所述,當(dāng)△PCM與△QCN全等時(shí),則t等于s或2s,故答案為:s或2s.【點(diǎn)睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、直角三角形的性質(zhì)、分類討論等知識(shí);本題綜合性強(qiáng),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.10.請(qǐng)按照研究問題的步驟依次完成任務(wù).(問題背景)(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說理證明∠A+∠B=∠C+∠D.(簡(jiǎn)單應(yīng)用)(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問題(1)中的結(jié)論)(問題探究)(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為;(拓展延伸)(4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為(用x、y表示∠P);(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關(guān)系,直接寫出結(jié)論.解析:(1)見解析;(2)∠P=23o;(3)∠P=26o;(4)∠P=;(5)∠P=.【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理即可證明;(2)如圖2,根據(jù)角平分線的性質(zhì)得到∠1=∠2,∠3=∠4,列方程組即可得到結(jié)論;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解決問題;(4)根據(jù)題意得出∠B+∠CAB=∠C+∠BDC,再結(jié)合∠CAP=∠CAB,∠CDP=∠CDB,得到y(tǒng)+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),從而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根據(jù)題意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再結(jié)合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【詳解】解:(1)證明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如圖2,∵AP、CP分別平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的結(jié)論得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如圖3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案為:26°;(4)由題意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案為:∠P=;(5)由題意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案為:∠P=.【點(diǎn)睛】本題考查三角形內(nèi)角和,三角形的外角的性質(zhì)、多邊形的內(nèi)角和等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用方程組的思想思考問題,屬于中考??碱}型.11.如圖,在等邊中,線段為邊上的中線.動(dòng)點(diǎn)在直線上時(shí),以為一邊在的下方作等邊,連結(jié).(1)求的度數(shù);(2)若點(diǎn)在線段上時(shí),求證:;(3)當(dāng)動(dòng)點(diǎn)在直線上時(shí),設(shè)直線與直線的交點(diǎn)為,試判斷是否為定值?并說明理由.解析:(1)30°;(2)證明見解析;(3)是定值,.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)可以直接得出結(jié)論;(2)根據(jù)等邊三角形的性質(zhì)就可以得出,,,,由等式的性質(zhì)就可以,根據(jù)就可以得出;(3)分情況討論:當(dāng)點(diǎn)在線段上時(shí),如圖1,由(2)可知,就可以求出結(jié)論;當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖2,可以得出而有而得出結(jié)論;當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖3,通過得出同樣可以得出結(jié)論.【詳解】(1)是等邊三角形,.線段為邊上的中線,,.(2)與都是等邊三角形,,,,,.在和中,;(3)是定值,,理由如下:①當(dāng)點(diǎn)在線段上時(shí),如圖1,由(2)可知,則,又,,是等邊三角形,線段為邊上的中線平分,即.②當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖2,與都是等邊三角形,,,,,,在和中,,,同理可得:,.③當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),與都是等邊三角形,,,,,,在和中,,,同理可得:,∵,.綜上,當(dāng)動(dòng)點(diǎn)在直線上時(shí),是定值,.【點(diǎn)睛】此題考查等邊三角形的性質(zhì),全等三角形的判定及性質(zhì),等邊三角形三線合一的性質(zhì),解題中注意分類討論的思想解題.12.如圖,若要判定紙帶兩條邊線a,b是否互相平行,我們可以采用將紙條沿AB折疊的方式來進(jìn)行探究.(1)如圖1,展開后,測(cè)得,則可判定a//b,請(qǐng)寫出判定的依據(jù)_________;(2)如圖2,若要使a//b,則與應(yīng)該滿足的關(guān)系是_________;(3)如圖3,紙帶兩條邊線a,b互相平行,折疊后的邊線b與a交于點(diǎn)C,若將紙帶沿(,分別在邊線a,b上)再次折疊,折疊后的邊線b與a交于點(diǎn),AB//,,求出的長(zhǎng).解析:(1)內(nèi)錯(cuò)角相等,兩直線平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根據(jù)平行線的判定定理,即可得到答案;(2)由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,結(jié)合三角形內(nèi)角和定理,即可得到答案;(3)分兩種情況:①當(dāng)B1在B的左側(cè)時(shí),如圖2,當(dāng)B1在B的右側(cè)時(shí),如圖3,分別求出的長(zhǎng),即可得到答案.【詳解】(1)∵,∴a∥b(內(nèi)錯(cuò)角相等,兩直線平行),故答案是:內(nèi)錯(cuò)角相等,兩直線平行;(2)如圖1,由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a∥b,則與應(yīng)該滿足的關(guān)系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①當(dāng)B1在B的左側(cè)時(shí),如圖2,∵AB//,a∥b,∴AA1=BB1=3,∴=AC-AA1=7-3=4;②當(dāng)B1在B的右側(cè)時(shí),如圖3,∵AB//,a∥b,∴AA1=BB1=3,∴=AC+AA1=7+3=10.綜上所述:=4或10.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì)定理,折疊的性質(zhì)以及三角形的內(nèi)角和定理,掌握“平行線間的平行線段長(zhǎng)度相等”是解題的關(guān)鍵.13.在《經(jīng)典幾何圖形的研究與變式》一課中,龐老師出示了一個(gè)問題:“如圖1,等腰直角三角形的三個(gè)頂點(diǎn)分別落在三條等距的平行線,,上,,且每?jī)蓷l平行線之間的距離為1,求AB的長(zhǎng)度”.在研究這道題的解法和變式的過程中,同學(xué)們提出了很多想法:(1)小明說:我只需要過B、C向作垂線,就能利用全等三角形的知識(shí)求出AB的長(zhǎng).(2)小林說:“我們可以改變的形狀.如圖2,,,且每?jī)蓷l平行線之間的距離為1,求AB的長(zhǎng).”(3)小謝說:“我們除了改變的形狀,還能改變平行線之間的距離.如圖3,等邊三角形ABC三個(gè)頂點(diǎn)分別落在三條平行線,,上,且與之間的距離為1,與之間的距離為2,求AB的長(zhǎng)、”請(qǐng)你根據(jù)3位同學(xué)的提示,分別求出三種情況下AB的長(zhǎng)度.解析:(1);(2);(3)【解析】【分析】(1)分別過點(diǎn)B,C向l1作垂線,交l1于M,N兩點(diǎn),證明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分別過點(diǎn)B,C向l1作垂線,交l1于點(diǎn)P,Q兩點(diǎn),在l1上取M,N使∠AMB=∠CNA=120°,證明△AMB≌△CAN,得到CN=AM,再通過△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的長(zhǎng);(3)在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交l3于點(diǎn)P,過A作l3的垂線,交l3于點(diǎn)Q,證明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,從而得到PC,結(jié)合BP算出BC的長(zhǎng),即為AB.【詳解】解:(1)如圖,分別過點(diǎn)B,C向l1作垂線,交l1于M,N兩點(diǎn),由題意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=;(2)分別過點(diǎn)B,C向l1作垂線,交l1于P,Q兩點(diǎn),在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=BM,NQ=NC,∵PB=1,CQ=2,設(shè)PM=a,NQ=b,∴,,解得:,,∴CN=AM==,∴AB===;(3)如圖,在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交于點(diǎn)P,過A作l3的垂線,交于點(diǎn)Q,∵△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,,∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,,即,解得:NP=,∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,,即,解得:QM=,∴AM==CN,∴PC=CN-NP=AM-NP=,在△BPC中,BP2+CP2=BC2,即BC=,∴AB=BC=.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),平行線之間的距離,等腰三角形的性質(zhì),等邊三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是利用平行線構(gòu)造全等三角形,再利用全等三角形的性質(zhì)以及勾股定理求解.14.在中,,,是的角平分線,于點(diǎn).(1)如圖1,連接,求證:是等邊三角形;(2)如圖2,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn)重合),以為一邊,在下方作,交延長(zhǎng)線于點(diǎn).求證:;(3)如圖3,點(diǎn)是線段上的點(diǎn),以為一邊,在的下方作,交延長(zhǎng)線于點(diǎn).直接寫出,與數(shù)量之間的關(guān)系.解析:(1)證明見解析;(2)證明見解析;(3)結(jié)論:,證明見解析.【解析】【分析】(1)先根據(jù)直角三角形的性質(zhì)得出,再根據(jù)角平分線的性質(zhì)可得,然后根據(jù)三角形的判定定理與性質(zhì)可得,最后根據(jù)等邊三角形的判定即可得證;(2)如圖(見解析),延長(zhǎng)ED使得,連接MF,先根據(jù)直角三角形的性質(zhì)、等邊三角形的判定得出是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證;(3)如圖(見解析),參照題(2),先證是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證.【詳解】(1)是的角平分線,在和中,是等邊三角形;(2)如圖,延長(zhǎng)ED使得,連接MF,是的角平分線,是等邊三角形,即在和中,,即即;(3)結(jié)論:,證明過程如下:如圖,延長(zhǎng)BD使得,連接NH由(2)可知,是等邊三角形,即在和中,,即即.【點(diǎn)睛】本題考查了直角三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2)和(3),通過作輔助線,構(gòu)造一個(gè)等邊三角形是解題關(guān)鍵.15.已知,在平面直角坐標(biāo)系中,,,C為AB的中點(diǎn),P是線段AB上一動(dòng)點(diǎn),D是線段OA上一點(diǎn),且,于E.(1)求的度數(shù);(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),PE的值是否變化?若變化,說明理由;若不變,請(qǐng)求PE的值.(3)若,求點(diǎn)D的坐標(biāo).解析:(1)45°;(2)PE的值不變,PE=4,理由見詳解;(3)D(,0).【解析】【分析】(1)根據(jù),,得△AOB為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì),即可求出∠OAB的度數(shù);(2)根據(jù)等腰直角三角形的性質(zhì)得到∠AOC=∠BOC=45°,OC⊥AB,再證明△POC≌△DPE,根據(jù)全等三角形的性質(zhì)得到OC=PE,即可得到答案;(3)證明△POB≌△DPA,得到PA=OB=,DA=PB,進(jìn)而得OD的值,即可求出點(diǎn)D的坐標(biāo).【詳解】(1),,∴OA=OB=,∵∠AOB=90°,∴△AOB為等腰直角三角形,∴∠OAB=45°;(2)PE的值不變,理由如下:∵△AOB為等腰直角三角形,C為AB的中點(diǎn),∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是線段OA上一點(diǎn),∴點(diǎn)P在線段BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC?△DPE(AAS),∴OC=PE,∵OC=AB=××=4,∴PE=4;(3)∵OP=PD,∴∠POD=∠PDO=(180°?45°)÷2=67.5°,∴∠APD=∠PDO?∠A=22.5°,∠BOP=90°?∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,∴△POB≌△DPA(AAS),∴PA=OB=,DA=PB,∴DA=PB=×-=8-,∴OD=OA?DA=-(8-)=,∴點(diǎn)D的坐標(biāo)為(,0).【點(diǎn)睛】本題主要考查等腰直角三角形的性質(zhì),三角形全等的判定與性質(zhì)定理,圖形與坐標(biāo),掌握等腰直角三角形的性質(zhì),是解題的關(guān)鍵.二、選擇題16.根據(jù)等式的性質(zhì),下列變形正確的是()A.若2a=3b,則a=b B.若a=b,則a+1=b﹣1C.若a=b,則2﹣=2﹣ D.若,則2a=3b解析:C【解析】【分析】利用等式的性質(zhì)對(duì)每個(gè)式子進(jìn)行變形即可找出答案.【詳解】解:A、根據(jù)等式性質(zhì)2,2a=3b兩邊同時(shí)除以2得a=b,原變形錯(cuò)誤,故此選項(xiàng)不符合題意;B、根據(jù)等式性質(zhì)1,等式兩邊都加上1,即可得到a+=b+1,原變形錯(cuò)誤,故此選項(xiàng)不符合題意;C、根據(jù)等式性質(zhì)1和2,等式兩邊同時(shí)除以﹣3且加上2應(yīng)得2﹣=2﹣,原變形正確,故此選項(xiàng)符合題意;D、根據(jù)等式性質(zhì)2,等式兩邊同時(shí)乘以6,3a=2b,原變形錯(cuò)誤,故此選項(xiàng)不符合題意.故選:C.【點(diǎn)睛】本題主要考查等式的性質(zhì).解題的關(guān)鍵是掌握等式的性質(zhì).運(yùn)用等式性質(zhì)1必須注意等式兩邊所加上的(或減去的)必須是同一個(gè)數(shù)或整式;運(yùn)用等式性質(zhì)2必須注意等式兩邊所乘的(或除的)數(shù)或式子不為0,才能保證所得的結(jié)果仍是等式.17.如圖,一副三角尺按不同的位置擺放,擺放位置中∠α與∠β不相等的圖形是()A. B. C. D.解析:C【解析】【分析】根據(jù)余角與補(bǔ)角的性質(zhì)進(jìn)行一一判斷可得答案..【詳解】解:A,根據(jù)角的和差關(guān)系可得∠α=∠β=45;B,根據(jù)同角的余角相等可得∠α=∠β;C,由圖可得∠α不一定與∠β相等;D,根據(jù)等角的補(bǔ)角相等可得∠α=∠β.故選C.【點(diǎn)睛】本題主要考查角度的計(jì)算及余角、補(bǔ)角的性質(zhì),其中等角的余角相等,等角的補(bǔ)角相等.18.寧波港處于“一帶一路”和長(zhǎng)江經(jīng)濟(jì)帶交匯點(diǎn),地理位置得天獨(dú)厚.全年貨物吞吐量達(dá)9.2億噸,晉升為全球首個(gè)“9億噸”大港,并連續(xù)8年蟬聯(lián)世界第一寶座.其中9.2億用科學(xué)記數(shù)法表示正確的是()A. B. C. D.解析:A【解析】因?yàn)榭茖W(xué)記數(shù)法的表達(dá)形式為:,所以9.2億用科學(xué)記數(shù)法表示為:,故選A.點(diǎn)睛:本題主要考查科學(xué)記數(shù)法的表達(dá)形式,解決本題的關(guān)鍵是要熟練掌握科學(xué)記數(shù)法的表達(dá)形式.19.下列判斷正確的是()A.有理數(shù)的絕對(duì)值一定是正數(shù).B.如果兩個(gè)數(shù)的絕對(duì)值相等,那么這兩個(gè)數(shù)相等.C.如果一個(gè)數(shù)是正數(shù),那么這個(gè)數(shù)的絕對(duì)值是它本身.D.如果一個(gè)數(shù)的絕對(duì)值是它本身,那么這個(gè)數(shù)是正數(shù).解析:C【解析】試題解析:A∵0的絕對(duì)值是0,故本選項(xiàng)錯(cuò)誤.B∵互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等,故本選項(xiàng)正確.C如果一個(gè)數(shù)是正數(shù),那么這個(gè)數(shù)的絕對(duì)值是它本身.D∵0的絕對(duì)值是0,故本選項(xiàng)錯(cuò)誤.故選C.20.下列每對(duì)數(shù)中,相等的一對(duì)是()A.(﹣1)3和﹣13 B.﹣(﹣1)2和12 C.(﹣1)4和﹣14 D.﹣|﹣13|和﹣(﹣1)3解析:A【解析】【分析】根據(jù)乘方和絕對(duì)值的性質(zhì)對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D.﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故選A.21.-2的倒數(shù)是()A.-2 B. C. D.2解析:B【解析】【分析】根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點(diǎn)睛】本題難度較低,主要考查學(xué)生對(duì)倒數(shù)相反數(shù)等知識(shí)點(diǎn)的掌握22.一周時(shí)間有604800秒,604800用科學(xué)記數(shù)法表示為()A. B. C. D.解析:B【解析】【分析】科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時(shí),要看把原數(shù)變成時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值時(shí),是正數(shù);當(dāng)原數(shù)的絕對(duì)值時(shí),是負(fù)數(shù).【詳解】604800的小數(shù)點(diǎn)向左移動(dòng)5位得到6.048,所以數(shù)字604800用科學(xué)記數(shù)法表示為,故選B.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù),表示時(shí)關(guān)鍵要正確確定的值以及的值.23.如圖是小明制作的一張數(shù)字卡片,在此卡片上可以用一個(gè)正方形圈出個(gè)位置的個(gè)數(shù)(如,,,,,,,,,,,,,,,).若用這樣的正方形圈出這張數(shù)字卡片上的個(gè)數(shù),則圈出的個(gè)數(shù)的和不可能為下列數(shù)中的()A. B.C. D.解析:C【解析】【分析】由題意設(shè)第一列第一行的數(shù)為x,依次表示每個(gè)數(shù),并相加進(jìn)行分析得出選項(xiàng).【詳解】解:設(shè)第一列第一行的數(shù)為x,第一行四個(gè)數(shù)分別為,第二行四個(gè)數(shù)分別為,第三行四個(gè)數(shù)分別為,第四行四個(gè)數(shù)分別為,16個(gè)數(shù)相加得到,當(dāng)相加數(shù)為208時(shí)x為1,當(dāng)相加數(shù)為480時(shí)x為18,相加數(shù)為496時(shí)x為19,相加數(shù)為592時(shí)x為25,由數(shù)字卡片可知,x為19時(shí),不滿足條件.故選C.【點(diǎn)睛】本題考查列代數(shù)式求解問題,理解題意設(shè)未知數(shù)并列出方程進(jìn)行分析即可.24.計(jì)算的結(jié)果是()A.-8 B.8 C.2 D.-2解析:C【解析】【分析】根據(jù)有理數(shù)加法法則計(jì)算即可得答案.【詳解】=-=2故選:C.【點(diǎn)睛】本題考查有理數(shù)加法,同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;互為相反數(shù)的兩個(gè)數(shù)相加得0;一個(gè)數(shù)與0相加,仍得這個(gè)數(shù);熟練掌握有理數(shù)加法法則是解題關(guān)鍵.25.下列方程是一元一次方程的是()A.=5x B.x2+1=3x C.=y(tǒng)+2 D.2x﹣3y=1解析:A【解析】【分析】只含有一個(gè)未知數(shù)(元),并且未知數(shù)的指數(shù)是1次的整式方程叫做一元一次方程,它的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 落實(shí)發(fā)文會(huì)簽制度
- 2026中冶堃元(重慶)金屬材料研究院有限公司招聘40人備考考試試題附答案解析
- 2026浙江溫州市平陽縣順溪鎮(zhèn)招聘編外人員1人參考考試試題附答案解析
- 第8章 拓展:管理主義的復(fù)歸與政策科學(xué)的興起
- 2026年度威海經(jīng)濟(jì)技術(shù)開發(fā)區(qū)鎮(zhèn)街所屬事業(yè)單位公開招聘初級(jí)綜合類崗位人員(15人)參考考試試題附答案解析
- 2026重慶飛駛特人力資源管理有限公司外派至中鐵建重慶石化銷售有限公司廚師崗招聘1人參考考試題庫(kù)附答案解析
- 2026陜西西安交通大學(xué)聚變科學(xué)與技術(shù)聯(lián)合研究院科研助理招聘1人備考考試試題附答案解析
- 2026麗水職業(yè)技術(shù)學(xué)院招聘專業(yè)技術(shù)人員19人(一)備考考試試題附答案解析
- 2026廣東深圳市何香凝美術(shù)館應(yīng)屆高校畢業(yè)生招聘1人備考考試試題附答案解析
- 2026中鐵西北科學(xué)研究院有限公司招聘隧道超前地質(zhì)預(yù)報(bào)巖土工程設(shè)計(jì)人員參考考試題庫(kù)附答案解析
- 2025年海管水平定向鉆穿越方案研究
- 全國(guó)網(wǎng)絡(luò)安全行業(yè)職業(yè)技能大賽(網(wǎng)絡(luò)安全管理員)考試題及答案
- 攝影家協(xié)會(huì)作品評(píng)選打分細(xì)則
- 電子產(chǎn)品三維建模設(shè)計(jì)細(xì)則
- 2025年中國(guó)道路交通毫米波雷達(dá)市場(chǎng)研究報(bào)告
- 設(shè)計(jì)交付:10kV及以下配網(wǎng)工程的標(biāo)準(zhǔn)與實(shí)踐
- 大學(xué)高數(shù)基礎(chǔ)講解課件
- hop安全培訓(xùn)課件
- 固井質(zhì)量監(jiān)督制度
- 中華人民共和國(guó)職業(yè)分類大典是(專業(yè)職業(yè)分類明細(xì))
- 2025年中考英語復(fù)習(xí)必背1600課標(biāo)詞匯(30天記背)
評(píng)論
0/150
提交評(píng)論