版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省青島市實驗高中2026屆數(shù)學高二上期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的遞增區(qū)間是()A. B.和C. D.和2.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定3.已知命題:,;命題:,使,若“”為假命題,則實數(shù)的取值范圍是()A. B.C. D.4.某工廠節(jié)能降耗技術改造后,在生產某產品過程中記錄的產量x(噸)與相應的生產能耗y(噸)的幾組對應數(shù)據(jù)如下表,現(xiàn)發(fā)現(xiàn)表中有個數(shù)據(jù)看不清,已知回歸直線方程為=6.3x+6.8,下列說法正確的是()x23456y1925★4044A.看不清的數(shù)據(jù)★的值為33B.回歸系數(shù)6.3的含義是產量每增加1噸,相應的生產能耗實際增加6.3噸C.據(jù)此模型預測產量為8噸時,相應的生產能耗為50.9噸D.回歸直線=6.3x+6.8恰好經(jīng)過樣本點(4,★)5.已知平面直角坐標系內一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構成圖形的面積為()A. B.C. D.6.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,輸出的結果為()A.4 B.9C.23 D.648.函數(shù),的最小值為()A.2 B.3C. D.9.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.210.設是定義在R上的函數(shù),其導函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷11.橢圓的一個焦點坐標為,則()A.2 B.3C.4 D.812.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設拋物線的焦點為,直線過焦點,且與拋物線交于兩點,,則__________14.已知拋物線的頂點為O,焦點為F,動點B在C上,若點B,O,F(xiàn)構成一個斜三角形,則______15.拋物線的準線方程是______16.已知雙曲線C的方程為,,,雙曲線C上存在一點P,使得,則實數(shù)a的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點及圓,點P是圓B上任意一點,線段的垂直平分線l交半徑于點T,當點P在圓上運動時,記點T的軌跡為曲線E(1)求曲線E的方程;(2)設存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點C、D、M、N,且四邊形是菱形,求該菱形周長的最大值18.(12分)已知函數(shù)的導函數(shù)為,且滿足(1)求及的值;(2)求在點處的切線方程19.(12分)p:函數(shù)在區(qū)間是遞增的;q:方程有實數(shù)解.(1)若p為真命題,求m的取值范圍;(2)若“”為真,“”為假,求m的取值范圍.20.(12分)已知橢圓C:()過點,且離心率為(1)求橢圓C的方程;(2)過點()的直線l(不與x軸重合)與橢圓C交于A,B兩點,點C與點B關于x軸對稱,直線AC與x軸交于點Q,試問是否為定值?若是,請求出該定值,若不是,請說明理由21.(12分)已知動圓過點,且與直線:相切(1)求動圓圓心的軌跡方程;(2)若過點且斜率的直線與圓心的軌跡交于兩點,求線段的長度22.(10分)已知直線方程為(1)若直線的傾斜角為,求的值;(2)若直線分別與軸、軸的負半軸交于、兩點,為坐標原點,求面積的最小值及此時直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求導后,由可解得結果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導數(shù)求函數(shù)的增區(qū)間,屬于基礎題.2、B【解析】利用余弦定理結合橢圓的定義可求得、,即可得出結論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.3、D【解析】根據(jù)題意,判斷命題和的真假性,結合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D4、D【解析】根據(jù)回歸直線方程的性質和應用,對每個選項進行逐一分析,即可判斷和選擇.【詳解】對A:因為,將代入,故,∴,故A錯誤;對,回歸系數(shù)6.3的含義是產量每增加1噸,相應的生產能耗大約增加6.3噸,故錯誤;對,當時,,故錯誤;對,因為,故必經(jīng)過,故正確.故選:.5、D【解析】先找臨界情況當PQ與圓C相切時,,進而可得滿足條件的點P形成的圖形為大圓(包括內部),即求.【詳解】當PQ與圓C相切時,,這種情況為臨界情況,當P往外時無法找到點Q使,當P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構成圖形的面積為.故選:D.【點睛】關鍵點點睛:本題的關鍵是找出臨界情況時點所滿足的條件,進而即可得到動點滿足條件的圖形,問題即可解決.6、A【解析】根據(jù)命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數(shù)的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應滿足,解得,所以實數(shù)的取值范圍是故選:A7、C【解析】直接按程序框圖運行即可求出結果.【詳解】初始化數(shù)值,,第一次執(zhí)行循環(huán)體,,,1≥4不成立;第二次執(zhí)行循環(huán)體,,,2≥4不成立;第三次執(zhí)行循環(huán)體,,,3≥4不成立;第四次執(zhí)行循環(huán)體,,,4≥4成立;輸出故選:C8、B【解析】求導函數(shù),分析單調性即可求解最小值【詳解】由,得,當時,,單調遞減;當時,,單調遞增∴當時,取得最小值,且最小值為故選:B.9、D【解析】由雙曲線的離心率為3和,求得,化簡,結合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當且僅當,即時,“”成立.故選:D【點睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點:一是各項為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.10、A【解析】首先構造函數(shù),再利用導數(shù)判斷函數(shù)的單調性,即可判斷選項.【詳解】設,,所以函數(shù)在單調遞增,即,所以,那么,即.故選:A11、D【解析】由條件可得,,,,由關系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標為,∴,又,∴,∴,故選:D.12、B【解析】由題設命題的描述判斷、的真假,再判斷其復合命題的真假即可.【詳解】對于命題,僅當時,故為假命題;對于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】拋物線焦點為,由于直線和拋物線有兩個交點,故直線斜率存在.根據(jù)拋物線的定義可知,故的縱坐標為,橫坐標為.不妨設,故直線的方程為,聯(lián)立直線方程和拋物線方程,化簡得,解得,故.所以.【點睛】本小題主要考查直線和拋物線的位置關系,考查拋物線的幾何性質和定義.考查三角形面積公式.在解題過程中,先根據(jù)題目所給拋物線的方程求得焦點的坐標,然后利用拋物線的定義:到定點的距離等于到定直線的距離,由此求得點的坐標,進而求得直線的方程,聯(lián)立直線方程和拋物線方程求得點的坐標.最后求得面積比.14、2【解析】畫出簡單示意圖,令,根據(jù)拋物線定義可得,應用數(shù)形結合及B在C上,求目標式的值.【詳解】如下圖,令,直線為拋物線準線,軸,由拋物線定義知:,又且,所以,故,又,故.故答案為:2.【點睛】關鍵點點睛:應用拋物線的定義將轉化為,再由三角函數(shù)的定義及點在拋物線上求值.15、【解析】由題意可得p=4,所以準線方程,填16、2【解析】設出,根據(jù)條件推出在圓上運動,根據(jù)題意要使雙曲線和圓有交點,則得答案.【詳解】設點,由得:,所以,化簡得:,即滿足條件的點在圓上運動,又點存在于上,故雙曲線與圓有交點,則,即實數(shù)a的最大值為2,故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質,建立方程求出,即可(2)設的方程為,,,,,設的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運用韋達定理和判別式大于0,以及弦長公式,求得,,運用菱形和橢圓的對稱性可得,關于原點對稱,結合菱形的對角線垂直和向量數(shù)量積為0,可得,設菱形的周長為,運用基本不等式,計算可得所求最大值【小問1詳解】點在線段的垂直平分線上,,又,曲線是以坐標原點為中心,和為焦點,長軸長為的橢圓設曲線的方程為,,,曲線的方程為【小問2詳解】設的方程為,,,,,設的方程為,,,,,聯(lián)立可得,由可得,化簡可得,①,,,同理可得,因為四邊形為菱形,所以,所以,又因為,所以,所以,關于原點對稱,又橢圓關于原點對稱,所以,關于原點對稱,,也關于原點對稱,所以且,所以,,,,因為四邊形為菱形,可得,即,即,即,可得,化簡可得,設菱形的周長為,則,當且僅當,即時等號成立,此時,滿足①,所以菱形的周長的最大值為【點睛】關鍵點點睛:在處理此類直線與橢圓相交問題中,一般先設出直線方程,聯(lián)立方程,利用韋達定理得出,,再具體問題具體分析,一般涉及弦長計算問題,運算比較繁瑣,需要較強的運算能力,屬于難題。18、(1);;(2).【解析】(1)由題可得,進而可得,然后可得,即得;(2)由題可求,,再利用點斜式即得.【小問1詳解】∵,∴,,∴,,∴.【小問2詳解】∵,,∴,,∴在點處的切線方程為,即.19、(1)(2)或【解析】(1)依題意在區(qū)間上恒成立,參變分離可得在區(qū)間上恒成立,再利用基本不等式計算可得;(2)首先求出命題為真時參數(shù)的取值范圍,再根據(jù)“”為真,“”為假,即可得到真假,或假真,從而得到不等式組,解得即可;【小問1詳解】解:為真命題,即函數(shù)在區(qū)間上是遞增的∴在區(qū)間上恒成立,∴在區(qū)間上恒成立,∵,當且僅當時等號成立,∴的取值范圍為.【小問2詳解】解:為真命題,即方程有實數(shù)解∴即∴或∵“”為真,“”為假∴真假,或假真∴或,解得或,∴的取值范圍為或;20、(1)(2)為定值【解析】(1)由題意可得解方程組求出,從而可得橢圓方程,(2)設直線AB:,,代入橢圓方程,消去,利用根與系數(shù)關系,再表示出直線AC的方程,從而可求出點Q的坐標,從而可表示出,然后化簡可得結論【小問1詳解】由題意得解得故橢圓C的方程為;【小問2詳解】設直線AB:,,聯(lián)立消去y得,設,,得,,因為點C與點B關于x軸對稱,所以,所以直線AC的斜率為,直線AC的方程,令,解得可得,所以,因為,所以,所以為定值【點睛】關鍵點點睛:此題考查橢圓方程的求法,考查直線與橢圓的位置關系,解題的關鍵是將直線AB的方程代入橢圓方程中化簡,利用根與系數(shù)關系,結合已知條件表示出直線AC的方程,從而可求出點Q的坐標,考查計算能力,屬于中檔題21、(1);(2).【解析】(1)由題意分析圓心符合拋物線定義,然后求軌跡方程;(2)直接聯(lián)立方程組,求出弦長.【詳解】解:(1)圓過點,且與直線相切點到直線的距離等于由拋物線定義可知點的軌跡是以為焦點、以為準線的拋物線,依題意,設點的軌跡方程為,則,解得,所以,動圓圓心的軌跡方程是(2)依題意可知直線,設聯(lián)立,得,則,所以,線段的長度為【點睛】(1)待定系數(shù)法、代入法可以求二次曲線的標準方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6s管理選擇試題及答案
- 幼兒鋼琴考試真題及答案
- 阿里巴巴秋招面試題及答案
- 成人資格考試題庫及答案
- 中共南充市委老干部局中共南充市委市直屬機關工作委員會2025年公開遴選公務員(參照管理人員)的(3人)考試備考題庫必考題
- 中國金融出版社有限公司2026校園招聘4人參考題庫必考題
- 南充市農業(yè)農村局2025年公開遴選公務員(參照管理人員)(2人)備考題庫必考題
- 吉水縣司法局2025年面向社會公開招聘10名司法協(xié)理員的備考題庫附答案
- 巴中職業(yè)技術學院2026年1月人才招聘參考題庫附答案
- 成都市規(guī)劃和自然資源局所屬事業(yè)單位2025年公開選調工作人員(20人)備考題庫附答案
- 話語體系構建的文化自信與敘事創(chuàng)新課題申報書
- 2026年春蘇教版新教材小學科學二年級下冊(全冊)教學設計(附教材目錄P97)
- 2026年基因測序技術臨床應用報告及未來五至十年生物科技報告
- 服裝銷售年底總結
- 文物安全保護責任書范本
- 廣東省惠州市某中學2025-2026學年七年級歷史上學期期中考試題(含答案)
- 2025公文寫作考試真題及答案
- 停電施工方案優(yōu)化(3篇)
- DB64∕T 1279-2025 鹽堿地綜合改良技術規(guī)程
- 2025年度耳鼻喉科工作總結及2026年工作計劃
- 2024年執(zhí)業(yè)藥師《藥學專業(yè)知識(一)》試題及答案
評論
0/150
提交評論