版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆江蘇省蘇州市五校聯(lián)考高三數(shù)學第一學期期末質(zhì)量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.362.等差數(shù)列中,,,則數(shù)列前6項和為()A.18 B.24 C.36 D.723.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.4.下圖是我國第24~30屆奧運獎牌數(shù)的回眸和中國代表團獎牌總數(shù)統(tǒng)計圖,根據(jù)表和統(tǒng)計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)的中位數(shù)是54.55.已知復數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限6.設,,,則的大小關系是()A. B. C. D.7.數(shù)學中的數(shù)形結合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的結合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結論:①曲線C經(jīng)過5個整點(即橫、縱坐標均為整數(shù)的點);②曲線C上任意一點到坐標原點O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結論的序號是()A.①③ B.②④ C.①②③ D.②③④8.在中所對的邊分別是,若,則()A.37 B.13 C. D.9.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.10.已知三棱錐且平面,其外接球體積為()A. B. C. D.11.下列函數(shù)中,圖象關于軸對稱的為()A. B.,C. D.12.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.14.已知函數(shù),令,,若,表示不超過實數(shù)的最大整數(shù),記數(shù)列的前項和為,則_________15.如果拋物線上一點到準線的距離是6,那么______.16.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.18.(12分)是數(shù)列的前項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列中最小的項.19.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當m=7時,求函數(shù)f(x)的定義域;(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.20.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.21.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.22.(10分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.2、C【解析】
由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項和公式可得結果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項和公式的應用,屬于基礎題.3、C【解析】
根據(jù),兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運算,屬于基礎題.4、B【解析】
根據(jù)表格和折線統(tǒng)計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯誤;D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點睛】此題考查統(tǒng)計圖,關鍵點讀懂折線圖,屬于簡單題目.5、C【解析】分析:根據(jù)復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應的點,得到答案.詳解:由題意,復數(shù)z=2i1-i所以復數(shù)z在復平面內(nèi)對應的點的坐標為(-1,-1),位于復平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據(jù)復數(shù)的四則運算求解復數(shù)z是解答的關鍵,著重考查了推理與運算能力.6、A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.7、B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當且僅當時取等號),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應用,根據(jù)方程,判斷曲線的性質(zhì)及結論,考查學生邏輯推理能力,是一道有一定難度的題.8、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.9、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.10、A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.11、D【解析】
圖象關于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對選項進行判斷可解.【詳解】圖象關于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關于原點(軸)對稱.12、A【解析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因為,因此,選A.點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關于原點對稱);(2)函數(shù)關于點對稱,函數(shù)關于直線對稱,(3)函數(shù)周期為T,則二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數(shù)的值域,考查了學生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.14、4【解析】
根據(jù)導數(shù)的運算,結合數(shù)列的通項公式的求法,求得,,,進而得到,再利用放縮法和取整函數(shù)的定義,即可求解.【詳解】由題意,函數(shù),且,,可得,,又由,可得為常數(shù)列,且,數(shù)列表示首項為4,公差為2的等差數(shù)列,所以,其中數(shù)列滿足,所以,所以,又由,可得數(shù)列的前n項和為,數(shù)列的前n項和為,所以數(shù)列的前項和為,滿足,所以,即,又由表示不超過實數(shù)的最大整數(shù),所以.故答案為:4.【點睛】本題主要考查了函數(shù)的導數(shù)的計算,以及等差數(shù)列的通項公式,累加法求解數(shù)列的通項公式,以及裂項法求數(shù)列的和的綜合應用,著重考查了分析問題和解答問題的能力,屬于中檔試題.15、【解析】
先求出拋物線的準線方程,然后根據(jù)點到準線的距離為6,列出,直接求出結果.【詳解】拋物線的準線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.【點睛】本小題主要考查拋物線的定義,屬于基礎題.16、【解析】
求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.18、(1);(2).【解析】
(1)由可得出,兩式作差可求得數(shù)列的通項公式;(2)求得,利用數(shù)列的單調(diào)性的定義判斷數(shù)列的單調(diào)性,由此可求得數(shù)列的最小項的值.【詳解】(1)對任意的,由得,兩式相減得,因此,數(shù)列的通項公式為;(2)由(1)得,則.當時,,即,;當時,,即,.所以,數(shù)列的最小項為.【點睛】本題考查利用與的關系求通項,同時也考查了利用數(shù)列的單調(diào)性求數(shù)列中的最小項,考查推理能力與計算能力,屬于中等題.19、(1),(2)【解析】試題分析:用零點分區(qū)間討論法解含絕對值的不等式,根據(jù)絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域為(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].20、(1)見解析(2).【解析】
(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,,,,,所以,,.設平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.21、(1)見解析;(2).【解析】
(1)取的中點,連接、,推導出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點到平面的距離等于點到平面的距離,在平面內(nèi)過點作于點,就是到平面的距離,也就是點到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點,連接、,、分別為、的中點,則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點到平面的距離等于點到平面的距離,在平面內(nèi)過點作于點,平面,平面,,,,平面,即就是到平面的距離,也就是點到平面的距離,設,則到平面的距離,,因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年博士學術英語口語評分標準試卷及答案
- 汽車盤式制動器生產(chǎn)線項目實施方案
- 高導銅桿生產(chǎn)線項目申請報告
- 隧道勘察技術優(yōu)化方案
- 工地施工團隊績效考核方案
- 鋼結構構件拼接工藝技術方案
- 康復技師考試題目及答案
- 電力安全評價方案
- 供電工程期末試題及答案
- 倉儲物流項目節(jié)能評估報告
- 2026年七臺河職業(yè)學院單招綜合素質(zhì)考試備考試題帶答案解析
- 內(nèi)蒙古包頭市昆都侖區(qū)2025-2026學年七年級上學期期末考試道德與法治試卷(含答案)
- 2026年湖南交通職業(yè)技術學院單招綜合素質(zhì)考試模擬試題附答案詳解
- 2026特區(qū)建工集團校園招聘(公共基礎知識)測試題附答案
- 齒輪泵的課件
- 2025至2030中國消防車行業(yè)運行規(guī)模及前景競爭趨勢預判報告
- GB/T 18344-2025汽車維護、檢測、診斷技術規(guī)范
- GB/T 3683-2023橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強液壓型規(guī)范
- 春よ、來い(春天來了)高木綾子演奏長笛曲譜鋼琴伴奏
- ARJ21機型理論知識考試題庫(匯總版)
- 2023年婁底市建設系統(tǒng)事業(yè)單位招聘考試筆試模擬試題及答案解析
評論
0/150
提交評論