河北省衡水2026屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第1頁
河北省衡水2026屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第2頁
河北省衡水2026屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第3頁
河北省衡水2026屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第4頁
河北省衡水2026屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

河北省衡水2026屆數(shù)學高一上期末教學質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,若實數(shù)滿足,且,實數(shù)滿足,那么下列不等式中,一定成立的是A. B.C. D.2.函數(shù)的圖像恒過定點,則的坐標是()A. B.C. D.3.若圓上至少有三個不同的點到直線的距離為,則的取值范圍是()A. B.C. D.4.已知三條直線,,的斜率分別為,,,傾斜角分別為.若,則下列關(guān)系不可能成立的是()A. B.C. D.5.已知函數(shù)則滿足的實數(shù)的取值范圍是()A. B.C. D.6.平行于同一平面的兩條直線的位置關(guān)系是A.平行 B.相交或異面C.平行或相交 D.平行、相交或異面7.已知函數(shù),若存在四個互不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.8.已知圓:與圓:,則兩圓的位置關(guān)系是A.相交 B.相離C.內(nèi)切 D.外切9.下列命題正確的是A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行D.若兩個平面都垂直于第三個平面,則這兩個平面平行10.直線x+1=0的傾斜角為A.0 B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)則___________.12.寫出一個周期為且值域為的函數(shù)解析式:_________13.函數(shù)的值域是____.14.已知,則的值為__________15.某地街道呈現(xiàn)東—西、南—北向的網(wǎng)格狀,相鄰街距都為1,兩街道相交的點稱為格點.若以互相垂直的兩條街道為坐標軸建立平面直角坐標系,根據(jù)垃圾分類要求,下述格點為垃圾回收點:,,,,,.請確定一個格點(除回收點外)___________為垃圾集中回收站,使這6個回收點沿街道到回收站之間路程的和最短.16.已知冪函數(shù)的圖象過點(2,),則___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.黃山市某鄉(xiāng)鎮(zhèn)響應“綠水青山就是金山銀山”的號召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調(diào)研發(fā)現(xiàn):某珍稀水果樹的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿足關(guān)系:.肥料成本投入為元,其它成本投入(如培育管理,施肥等人工費)元.已知這種水果的市場售價為15元/千克,且銷路暢通供不應求,記該水果樹的單株利潤為(單位:元).(1)求的函數(shù)關(guān)系式;(2)當施用肥料為多少千克時,該水果樹的單株利潤最大?最大利潤是多少?18.已知(1)畫出這個函數(shù)的圖象(2)當0<a<2時f(a)>f(2),利用函數(shù)圖象求出a的取值范圍19.已知正方體ABCD-的棱長為2.(1)求三棱錐的體積;(2)證明:.20.已知函數(shù).(1)當時,求的定義域;(2)若函數(shù)只有一個零點,求的取值范圍.21.計算求值:(1)計算:;(2).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】∵在上是增函數(shù),且,中一項為負,兩項為正數(shù);或者三項均為負數(shù);即:;或由于實數(shù)x0是函數(shù)的一個零點,當時,當時,故選B2、D【解析】利用指數(shù)函數(shù)的性質(zhì)即可得出結(jié)果.【詳解】由指數(shù)函數(shù)恒過定點,所以函數(shù)的圖像恒過定點.故選:D3、D【解析】先整理圓的方程為可得圓心和半徑,再轉(zhuǎn)化問題為圓心到直線的距離小于等于,進而求解即可【詳解】由題,圓標準方程為,所以圓心為,半徑,因為圓上至少有三個不同點到直線的距離為,所以,所以圓心到直線的距離小于等于,即,解得,故選:D【點睛】本題考查直線與圓的位置關(guān)系的應用,考查圓的一般方程到圓的標準方程的轉(zhuǎn)化,考查數(shù)形結(jié)合思想4、D【解析】根據(jù)直線的斜率與傾斜角的關(guān)系即可求解.【詳解】解:由題意,根據(jù)直線的斜率與傾斜角的關(guān)系有:當或時,或,故選項B可能成立;當時,,故選項A可能成立;當時,,故選項C可能成立;所以選項D不可能成立.故選:D.5、B【解析】根據(jù)函數(shù)的解析式,得出函數(shù)的單調(diào)性,把不等式,轉(zhuǎn)化為相應的不等式組,即可求解.【詳解】由題意,函數(shù),可得當時,,當時,函數(shù)在單調(diào)遞增,且,要使得,則,解得,即不等式的解集為,故選:B.【點睛】思路點睛:該題主要考查了函數(shù)的單調(diào)性的應用,解題思路如下:(1)根據(jù)函數(shù)的解析式,得出函數(shù)單調(diào)性;(2)合理利用函數(shù)的單調(diào)性,得出不等式組;(3)正確求解不等式組,得到結(jié)果.6、D【解析】根據(jù)線面平行的位置關(guān)系及線線位置關(guān)系的分類及定義,可由已知兩直線平行于同一平面,得到兩直線的位置關(guān)系【詳解】解:若,且則與可能平行,也可能相交,也有可能異面故平行于同一個平面的兩條直線的位置關(guān)系是平行或相交或異面故選【點睛】本題考查的知識點是空間線線關(guān)系及線面關(guān)系,熟練掌握空間線面平行的位置關(guān)系及線線關(guān)系的分類及定義是詳解本題的關(guān)鍵,屬于基礎題7、D【解析】令,則,由題意,有兩個不同的解,有兩個不相等的實根,由圖可知,得或,所以和各有兩個解當有兩個解時,則,當有兩個解時,則或,綜上,的取值范圍是,故選D點睛:本題考查函數(shù)性質(zhì)的應用.本題為嵌套函數(shù)的應用,一般的,我們應用整體思想解決問題,所以令,則,由題意,有兩個不同的解,有兩個不相等的實根,再結(jié)合圖象逐步分析,解得答案8、C【解析】分析:求出圓心的距離,與半徑的和差的絕對值比較得出結(jié)論詳解:圓,圓,,所以內(nèi)切.故選C點睛:兩圓的位置關(guān)系判斷如下:設圓心距為,半徑分別為,則:,內(nèi)含;,內(nèi)切;,相交;,外切;,外離9、C【解析】若兩條直線和同一平面所成角相等,這兩條直線可能平行,也可能為異面直線,也可能相交,所以A錯;一個平面不在同一條直線的三點到另一個平面的距離相等,則這兩個平面平行,故B錯;若兩個平面垂直同一個平面兩平面可以平行,也可以垂直;故D錯;故選項C正確.[點評]本題旨在考查立體幾何的線、面位置關(guān)系及線面的判定和性質(zhì),需要熟練掌握課本基礎知識的定義、定理及公式.10、C【解析】軸垂直的直線傾斜角為.【詳解】直線垂直于軸,傾斜角為.故選:C【點睛】本題考查直線傾斜角,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】先求出,再根據(jù)該值所處范圍代入相應的解析式中計算結(jié)果.【詳解】由題意可得,則,故答案為:5.12、【解析】根據(jù)函數(shù)的周期性和值域,在三角函數(shù)中確定一個解析式即可【詳解】解:函數(shù)的周期為,值域為,,則的值域為,,故答案為:13、##【解析】由余弦函數(shù)的有界性求解即可【詳解】因為,所以,所以,故函數(shù)的值域為,故答案為:14、【解析】答案:15、【解析】根據(jù)題意,設滿足題意得格點為,這6個回收點沿街道到回收站之間路程的和為,故,再分別求和的最小值時的即可得答案.【詳解】解:設滿足題意得格點為,這6個回收點沿街道到回收站之間路程和為,則,令,由于其去掉絕對值為一次函數(shù),故其最小值在區(qū)間端點值,所以代入得,所以當時,取得最小值,同理,令,代入得所以當或時,取得最小值,所以當,或時,這6個回收點沿街道到回收站之間路程的和最小,由于是一個回收點,故舍去,所以當,這6個回收點沿街道到回收站之間路程的和最小,故格點為故答案為:16、【解析】由冪函數(shù)所過的點求的解析式,進而求即可.【詳解】由題設,若,則,可得,∴,故.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)f(2)當施用肥料為5千克時,該水果樹的單株利潤最大,最大利潤是750元【解析】(1)用銷售收入減去成本求得的函數(shù)關(guān)系式.(2)結(jié)合二次函數(shù)的性質(zhì)、基本不等式來求得最大利潤以及此時對應的施肥量.小問1詳解】由已知得:,故fx【小問2詳解】若,則,此時,對稱軸為,故有最大值為.若,則,當且僅當,即時等號成立,此時,有最大值為,綜上有,有最大值為750,∴當施用肥料為5千克時,該水果樹的單株利潤最大,最大利潤是750元.18、(1)見解析;(2){a|0<a<}.【解析】(1)由函數(shù)整體加絕對值知,只需將函數(shù)位于x軸下方的圖像關(guān)于x對稱即可;(2)利用數(shù)形結(jié)合,結(jié)合a范圍即可得解.【詳解】(1)如圖:?(2)令f(a)=f(2),即|log3a|=|log32|,解得a=或a=2.從圖像可知,當0<a<時,滿足f(a)>f(2),所以a的取值范圍是{a|0<a<}.【點睛】本題主要考查了對數(shù)函數(shù)的圖象及圖象變換,利用數(shù)形結(jié)合解不等式.19、(1)(2)證明見解析【解析】(1)將問題轉(zhuǎn)化為求即可;(2)根據(jù)線面垂直證明線線垂直.【小問1詳解】在正方體ABCD-中,易知⊥平面ABD,∴.【小問2詳解】證明:在正方體中,易知,∵⊥平面ABD,平面ABD,∴.又∵,、平面,∴BD⊥平面.又平面,∴20、(1);(2)【解析】(1)當時,求的解析式,令真數(shù)位置大于,解不等式即可求解;(2)由題意可得,整理可得只有一解,分別討論,時是否符合題意,再分別討論和有且只有一個是方程①的解,結(jié)合定義域列不等式即可求解.【小問1詳解】當時,,由,即,因為,所以.故的定義域為.【小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論