廣東省深圳市翻身實(shí)驗(yàn)學(xué)校2026屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第1頁
廣東省深圳市翻身實(shí)驗(yàn)學(xué)校2026屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第2頁
廣東省深圳市翻身實(shí)驗(yàn)學(xué)校2026屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第3頁
廣東省深圳市翻身實(shí)驗(yàn)學(xué)校2026屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第4頁
廣東省深圳市翻身實(shí)驗(yàn)學(xué)校2026屆高二上數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省深圳市翻身實(shí)驗(yàn)學(xué)校2026屆高二上數(shù)學(xué)期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.給出下列結(jié)論:①如果數(shù)據(jù)的平均數(shù)為3,方差為0.2,則的平均數(shù)和方差分別為14和1.8;②若兩個變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的值越接近于1.③對A、B、C三種個體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.則正確的個數(shù)是().A.3 B.2C.1 D.02.已知點(diǎn),在雙曲線上,線段的中點(diǎn),則()A. B.C. D.3.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.4.下列說法正確的是()A.空間中的任意三點(diǎn)可以確定一個平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個平面D.正四棱柱的側(cè)面都是正方形5.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.1446.如圖,在平行六面體中,為與的交點(diǎn),若,,,則的值為()A. B.C. D.7.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.8.圓與圓的公切線的條數(shù)為()A.1 B.2C.3 D.49.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.10.?dāng)?shù)列滿足,,,則數(shù)列的前8項(xiàng)和為()A.25 B.26C.27 D.2811.函數(shù)的定義域?yàn)殚_區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點(diǎn)有()A.1個 B.2個C.3個 D.4個12.甲、乙、丙、丁、戊共5名同學(xué)進(jìn)行勞動技術(shù)比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當(dāng)然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.120二、填空題:本題共4小題,每小題5分,共20分。13.已知=(3,a+b,a﹣b)(a,b∈R)是直線l的方向向量,=(1,2,3)是平面α的法向量,若l⊥α,則5a+b=__14.若在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的和,可形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷進(jìn)行構(gòu)造,又可以得到新的數(shù)列.現(xiàn)將數(shù)列1,2進(jìn)行構(gòu)造,第1次得到數(shù)列1,3,2;第2次得到數(shù)列1,4,3,5,2;依次構(gòu)造,第次得到數(shù)列1,,,,…,,2;記則______,設(shè)數(shù)列的前n項(xiàng)和為,則______15.已知函數(shù)的導(dǎo)函數(shù)為,且對任意,,若,,則的取值范圍是___________.16.底面半徑為1,母線長為2的圓錐的體積為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)F在x軸的正半軸,F(xiàn)到直線的距離為.點(diǎn)為此拋物線上的一點(diǎn),.直線l與拋物線交于異于N的兩點(diǎn)A,B,且.(1)求拋物線方程和N點(diǎn)坐標(biāo);(2)求證:直線AB過定點(diǎn),并求該定點(diǎn)坐標(biāo).18.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn),,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點(diǎn),使二面角大小為?若存在,請指出點(diǎn)的位置,若不存在,請說明理由.19.(12分)已知等差數(shù)列前n項(xiàng)和為,,,若對任意的正整數(shù)n成立,求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù)(1)求函數(shù)在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值21.(12分)已知等差數(shù)列的前項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列的前項(xiàng)和.22.(10分)從橢圓上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn),A是橢圓C與x軸正半軸的交點(diǎn),直線AP的斜率為,若橢圓長軸長為8(1)求橢圓C的方程;(2)點(diǎn)Q為橢圓上任意一點(diǎn),求面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】對結(jié)論逐一判斷【詳解】對于①,則的平均數(shù)為,方差為,故①正確對于②,若兩個變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對值越接近于1,故②錯誤對于③,對A、B、C三種個體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為,故③正確故正確結(jié)論為2個故選:B2、D【解析】先根據(jù)中點(diǎn)弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長公式求解的長.【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因?yàn)榈闹悬c(diǎn)為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達(dá)定理得:,,則故選:D3、A【解析】根據(jù)題設(shè)可得關(guān)于的不等式,從而可求的取值范圍.【詳解】設(shè)公差為,因?yàn)?,,所以,即,從?故選:A.4、C【解析】根據(jù)立體幾何相關(guān)知識對各選項(xiàng)進(jìn)行判斷即可.【詳解】對于A,根據(jù)公理2及推論可知,不共線的三點(diǎn)確定一個平面,故A錯誤;對于B,在一個平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯誤;對于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個平面,故C正確;對于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯誤.故選:C5、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫出其通項(xiàng)公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項(xiàng)為10,公差為12的等差數(shù)列,所以,故,故選:A6、D【解析】將用基底表示,然后利用空間向量數(shù)量積的運(yùn)算性質(zhì)可求得結(jié)果.【詳解】因?yàn)樗倪呅螢槠叫兴倪呅?,且,則為的中點(diǎn),,則.故選:D7、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因?yàn)?,又,所以,,又,即,,所以離心率故選:C8、D【解析】公切線條數(shù)與圓與圓的位置關(guān)系是相關(guān)的,所以第一步需要判斷圓與圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為3;圓的圓心坐標(biāo)為,半徑為1,所以兩圓的心心距為,所以兩圓相離,公切線有4條.故選:D.9、A【解析】根據(jù)等差數(shù)列的通項(xiàng)公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A10、C【解析】根據(jù)通項(xiàng)公式及求出,從而求出前8項(xiàng)和.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,則數(shù)列的前8項(xiàng)和為.故選:C11、B【解析】利用極值點(diǎn)的定義求解.【詳解】由導(dǎo)函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點(diǎn):第一個點(diǎn)處導(dǎo)數(shù)左正右負(fù),第二個點(diǎn)處導(dǎo)數(shù)左負(fù)右正,第三個點(diǎn)處導(dǎo)數(shù)左正右正,第四個點(diǎn)處導(dǎo)數(shù)左正右負(fù),所以函數(shù)在開區(qū)間內(nèi)的極大值點(diǎn)有2個,故選:B12、A【解析】根據(jù)題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計(jì)算可得答案【詳解】根據(jù)題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、36【解析】根據(jù)方向向量和平面法向量的定義即可得出,然后即可得出,然后求出a,b的值,進(jìn)而求出5a+b的值【詳解】∵l⊥α,∴,∴,解得,∴故答案為:3614、①.81②.【解析】根據(jù)數(shù)列的構(gòu)造寫出前面幾次得到的新數(shù)列,尋找規(guī)律,構(gòu)造等比數(shù)列,求出通項(xiàng)公式,再進(jìn)行求和.【詳解】第1次得到數(shù)列1,3,2,此時;第2次得到數(shù)列1,4,3,5,2,此時;第3次得到數(shù)列1,5,4,7,3,8,5,7,2,此時;第4次得到數(shù)列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此時,故81,且故,又,所以數(shù)列是以為首項(xiàng),公比為3的等比數(shù)列,所以,故,所以故答案為:81,15、【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性可得解.【詳解】構(gòu)造函數(shù),則,故函數(shù)在上單調(diào)遞減,由已知可得,由可得,可得.故答案為:.16、【解析】先由勾股定理求圓錐的高,再結(jié)合圓錐的體積公式運(yùn)算即可得解.【詳解】解:設(shè)圓錐的高為,由勾股定理可得,由圓錐的體積可得,故答案為.【點(diǎn)睛】本題考查了圓錐的體積公式,重點(diǎn)考查了勾股定理,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析,定點(diǎn)【解析】(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為,利用點(diǎn)到直線距離公式可求出,再利用焦半徑公式可求出N點(diǎn)坐標(biāo);(2)設(shè)直線的方程為,與拋物線聯(lián)立,利用韋達(dá)定理計(jì)算,可得關(guān)系,然后代入直線方程可得定點(diǎn).【小問1詳解】設(shè)拋物線的標(biāo)準(zhǔn)方程為,,其焦點(diǎn)為則,∴所以拋物線的方程為.,所以,所以.因?yàn)?,所以,所?【小問2詳解】由題意知,直線的斜率不為0,設(shè)直線的方程為(),聯(lián)立方程得設(shè)兩個交點(diǎn),(,).所以所以,即整理得,此時恒成立,此時直線l的方程為,可化為,從而直線過定點(diǎn).18、(1)證明見解析;(2);(3)存在,點(diǎn)在線段上位于靠近點(diǎn)的四等分點(diǎn)處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設(shè)存在點(diǎn),設(shè),其中,利用空間向量法可得出關(guān)于的方程,結(jié)合的取值范圍可求得的值,即可得出結(jié)論.【小問1詳解】證明:,,為的中點(diǎn),則且,四邊形為平行四邊形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小問2詳解】解:,為的中點(diǎn),.平面平面,且平面平面,平面,平面.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,,,則,,異面直線與所成角的余弦值為.【小問3詳解】解:假設(shè)存在點(diǎn),設(shè),其中,所以,,且,設(shè)平面法向量為,所以,令,可得,由(2)知平面的一個法向量為,二面角為,則,整理可得,因,解得.故存在點(diǎn),且點(diǎn)在線段上位于靠近點(diǎn)的四等分點(diǎn)處.19、【解析】設(shè)等差數(shù)列的公差為,根據(jù)題意得,解方程得,,進(jìn)而得,故恒成立,再結(jié)合二次函數(shù)的性質(zhì)得當(dāng)或4時,取得最小值,進(jìn)而得答案.【詳解】解:設(shè)等差數(shù)列的公差為,由已知,.聯(lián)立方程組,解得,.所以,,由題意,即.令,其圖象為開口向上的拋物線,對稱軸為,所以當(dāng)或4時,取得最小值,所以實(shí)數(shù)的取值范圍是.20、(1)+1;(2)單調(diào)增區(qū)間,單調(diào)減區(qū)間是和,極大值為,極小值為【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求出切線斜率,求出后利用點(diǎn)斜式即可得解;(2)求出函數(shù)導(dǎo)數(shù)后,解一元二次不等式分別求出、時的取值范圍即可得解.【詳解】(1)因?yàn)椋?,∴切線方程為,即+1;(2),所以當(dāng)或時,,當(dāng)時,,所以函數(shù)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是和,極大值為,極小值為21、(1)(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個量的值,可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)法可求得,即可證得原不等式成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,解得,因此,.【小問2詳解】證明:,因此,.故原不等式得證.22、(1)(2)18【解析】(1)易得,,進(jìn)而有,再結(jié)合已知即可求解;(2)由(1)易得直線AP的方程為,,設(shè)與直線AP平行的直線方程為,由題意,當(dāng)該直線與橢圓相切

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論