版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江西省南昌市三校聯(lián)考2026屆高二上數(shù)學(xué)期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的前項和為,當(dāng)時,()A.11 B.20C.33 D.352.已知點在拋物線的準(zhǔn)線上,則該拋物線的焦點坐標(biāo)是()A. B.C. D.3.已知點,,直線與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.4.設(shè)雙曲線:的左,右焦點分別為,,過的直線與雙曲線的右支交于A,B兩點,若,則雙曲線的離心率為()A.4 B.2C. D.5.南宋數(shù)學(xué)家楊輝在《詳解九章算術(shù)法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23,則該數(shù)列的第31項為()A.336 B.467C.483 D.6016.已知,,若,則實數(shù)的值為()A. B.C. D.27.拋物線的頂點在原點,對稱軸是x軸,點在拋物線上,則拋物線的方程為()A. B.C. D.8.若關(guān)于一元二次不等式的解集為,則實數(shù)的取值范圍是()A. B.C. D.9.已知對稱軸為坐標(biāo)軸的雙曲線的兩漸近線方程為,若雙曲線上有一點,使,則雙曲線的焦點()A.在軸上 B.在軸上C.當(dāng)時在軸上 D.當(dāng)時在軸上10.若直線a,b是異面直線,點O是空間中不在直線a,b上的任意一點,則()A.不存在過點O且與直線a,b都相交的直線B.過點O一定可以作一條直線與直線a,b都相交C.過點O可以作無數(shù)多條直線與直線a,b都相交D.過點O至多可以作一條直線與直線a,b都相交11.在正方體ABCD﹣A1B1C1D1中,E為棱A1B1上一點,且AB=2,若二面角B1﹣BC1﹣E為45°,則四面體BB1C1E的外接球的表面積為()A.π B.12πC.9π D.10π12.如圖,某圓錐軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知橢圓+y2=1的左焦點為F,O為坐標(biāo)原點,設(shè)過點F且不與坐標(biāo)軸垂直的直線交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,則點G橫坐標(biāo)的取值范圍為________14.已知數(shù)列的前4項依次為,,,,則的一個通項公式為________15.某班名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計該班本次測試平均分為______16.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點,點P是雙曲線C上的任意一點(不是頂點),過F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標(biāo)原點.若|F1F2|=6|OH|,則雙曲線C的方程為____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求函數(shù)單調(diào)區(qū)間;(2)函數(shù)在區(qū)間上的最小值小于零,求a的取值范圍18.(12分)已知雙曲線與橢圓有公共焦點,且它的一條漸近線方程為.(1)求橢圓的焦點坐標(biāo);(2)求雙曲線的標(biāo)準(zhǔn)方程19.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值20.(12分)p:函數(shù)在區(qū)間是遞增的;q:方程有實數(shù)解.(1)若p為真命題,求m的取值范圍;(2)若“”為真,“”為假,求m的取值范圍.21.(12分)已知橢圓的焦點為,且長軸長是焦距的倍(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為1的直線與橢圓相交于兩點,已知點,求面積的最大值22.(10分)如圖,在空間四邊形中,分別是的中點,分別在上,且(1)求證:四點共面;(2)設(shè)與交于點,求證:三點共線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由數(shù)列的性質(zhì)可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數(shù)列的前n項和的性質(zhì),屬于基礎(chǔ)題.2、C【解析】首先表示出拋物線的準(zhǔn)線,根據(jù)點在拋物線的準(zhǔn)線上,即可求出參數(shù),即可求出拋物線的焦點.【詳解】解:拋物線的準(zhǔn)線為因為在拋物線的準(zhǔn)線上故其焦點為故選:【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題.3、B【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,作出圖象如圖所示:,,若直線與線段相交,則或,所以實數(shù)的取值范圍是或,故選:B4、B【解析】根據(jù)雙曲線的定義及,求出,,,,再利用余弦定理計算可得;【詳解】解:依題意可知、,又且,所以,,,,則,且,即,即,所以離心率.故選:B5、B【解析】先由遞推關(guān)系利用累加法求出通項公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項為.故選:B6、D【解析】由,然后根據(jù)向量數(shù)量積的坐標(biāo)運算即可求解.【詳解】解:因,,所以,因為,所以,即,解得,故選:D.7、B【解析】首先根據(jù)題意設(shè)出拋物線的方程,利用點在曲線上的條件為點的坐標(biāo)滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【詳解】解:根據(jù)題意設(shè)出拋物線的方程,因為點在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.8、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實數(shù)的取值范圍是.故選:B9、B【解析】設(shè)出雙曲線的一般方程,利用題設(shè)不等式,令二者平方,整理求得的,進而可判斷出焦點的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點在軸上.故選B.【點睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對雙曲線標(biāo)準(zhǔn)方程的理解與運用,求解時要注意焦點落在軸或軸的特點,考查學(xué)生分析問題和解決問題的能力10、D【解析】設(shè)直線與點確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點是空間中不在直線,上的任意一點,設(shè)直線與點確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點且與直線,都相交的直線;②若與不平行,則直線即為過點且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點且與直線,都相交的直線.綜上所述,過點至多有一條直線與直線,都相交.故選:D.11、D【解析】連接交于,可得,利用線面垂直的判定定理可得:平面,于是,可得而為二面角的平面角,再求出四面體的外接球半徑,進而利用球的表面積計算公式得出結(jié)論【詳解】連接交于,則,易知,則平面,所以,從而為二面角的平面角,則.因為,所以,所以四面體的外接球半徑故四面體BB1C1E的外接球的表面積為故選:D【點睛】本題考查了正方體的性質(zhì)、線面垂直的判定與性質(zhì)定理、二面角的平面角、球的表面積計算公式,考查了推理能力與計算能力,屬于中檔題12、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,求出線段的垂直平分線方程,可求得點的橫坐標(biāo),利用不等式的基本性質(zhì)可求得點的橫坐標(biāo)的取值范圍.【詳解】設(shè)直線的方程為,聯(lián)立,整理可得,因為直線過橢圓的左焦點,所以方程有兩個不相等的實根設(shè)點、,設(shè)的中點為,則,,直線的垂直平分線的方程為,令,則.因為,所以故點的橫坐標(biāo)的取值范圍.故答案為:14、(答案不唯一)【解析】觀察數(shù)列前幾項,找出規(guī)律即可寫出通項公式.【詳解】根據(jù)數(shù)列前幾項,先不考慮正負(fù),可知,再由奇數(shù)項為負(fù),偶數(shù)項為正,可得到一個通項公式,故答案為:(不唯一)15、【解析】將每個矩形底邊的中點值乘以對應(yīng)矩形的面積,即可得解.【詳解】由頻率分布直方圖可知,該班本次測試平均分為.故答案為:.16、8x2﹣y2=1【解析】延長F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結(jié)合雙曲線的a,b,c的關(guān)系,可得雙曲線方程【詳解】解:延長F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點,|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2).【解析】(1)對求導(dǎo)并求定義域,討論、分別判斷的符號,進而確定單調(diào)區(qū)間.(2)由題設(shè),結(jié)合(1)所得的單調(diào)性,討論、、分別確定在給定區(qū)間上的最小值,根據(jù)最小值小于零求參數(shù)a的范圍.【小問1詳解】由題設(shè),且定義域為,當(dāng),即時,在上,即在上遞增;當(dāng),即時,在上,在上,所以在上遞減,在上遞增;【小問2詳解】由(1)知:若,即時,則在上遞增,故,可得;若,即時,則在上遞減,在上遞增,故,不合題設(shè);若,即時,則在上遞減,故,得;綜上,a的取值范圍.18、(1);(2).【解析】(1)由橢圓方程及其參數(shù)關(guān)系求出參數(shù)c,即可得焦點坐標(biāo).(2)由漸近線及焦點坐標(biāo),可設(shè)雙曲線方程為,再由雙曲線參數(shù)關(guān)系求出參數(shù),即可得雙曲線標(biāo)準(zhǔn)方程.【小問1詳解】由題設(shè),,又,所以橢圓的焦點坐標(biāo)為.【小問2詳解】由題設(shè),令雙曲線為,由(1)知:,可得,所以雙曲線的標(biāo)準(zhǔn)方程為.19、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標(biāo)原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立空間直角坐標(biāo)系.求出平面的一個法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因為四邊形是等腰梯形,,所以,所以,即因為平面,所以,又因為,所以平面,因為平面,所以平面平面【小問2詳解】以為坐標(biāo)原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立如圖所示的空間直角坐標(biāo)系設(shè),則,所以,,,由(1)可知平面的一個法向量為設(shè)平面的法向量為,因為,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.20、(1)(2)或【解析】(1)依題意在區(qū)間上恒成立,參變分離可得在區(qū)間上恒成立,再利用基本不等式計算可得;(2)首先求出命題為真時參數(shù)的取值范圍,再根據(jù)“”為真,“”為假,即可得到真假,或假真,從而得到不等式組,解得即可;【小問1詳解】解:為真命題,即函數(shù)在區(qū)間上是遞增的∴在區(qū)間上恒成立,∴在區(qū)間上恒成立,∵,當(dāng)且僅當(dāng)時等號成立,∴的取值范圍為.【小問2詳解】解:為真命題,即方程有實數(shù)解∴即∴或∵“”為真,“”為假∴真假,或假真∴或,解得或,∴的取值范圍為或;21、(1);(2)1.【解析】(1)根據(jù)給定條件求出橢圓半焦距c,長短半軸長a,b即可得解.(2)設(shè)出直線的方程,再與橢圓C的方程聯(lián)立,求出弦AB長及點P到直線的距離,然后求出面積的表達(dá)式并求其最大值即得.【小問1詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,依題意,半焦距,,即,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】依題意,設(shè)直線,,由消去y并整理得:,由,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 灌區(qū)管理考試題目及答案
- 妊娠合并心臟病產(chǎn)后抗凝治療的精準(zhǔn)醫(yī)療策略
- 產(chǎn)品造型基礎(chǔ)試題及答案
- 2026普法考試題庫及答案
- 婦幼健康服務(wù)供給優(yōu)化策略
- 大數(shù)據(jù)定量報告優(yōu)化策略
- 病句考試題及答案
- 工地電工考試及答案
- 口語考試雅思問題及答案
- 多組學(xué)數(shù)據(jù)整合在疾病預(yù)測中的價值
- 2023-2024學(xué)年北京市海淀區(qū)清華附中八年級(上)期末數(shù)學(xué)試卷(含解析)
- 臨終決策中的醫(yī)患共同決策模式
- 2026年包頭輕工職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試備考題庫及答案詳解
- 草原補償協(xié)議書
- 防護網(wǎng)施工專項方案
- 九年級物理 2025-2026學(xué)年九年級上學(xué)期期末物理試題及答案 2025-2026學(xué)年度上學(xué)期期末教學(xué)質(zhì)量測查九年級物理試卷
- 2026年及未來5年市場數(shù)據(jù)中國聚甲醛市場運行態(tài)勢及行業(yè)發(fā)展前景預(yù)測報告
- 降低住院患者口服藥缺陷率教學(xué)課件
- 《質(zhì)量管理與控制技術(shù)基礎(chǔ)》第一章 質(zhì)量管理基礎(chǔ)知識
- 高一年級主任工作總結(jié)(4篇)
- GB/T 12326-2008電能質(zhì)量電壓波動和閃變
評論
0/150
提交評論