版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
平頂山市重點(diǎn)中學(xué)2026屆高三上數(shù)學(xué)期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.2.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進(jìn)行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.3.已知點(diǎn)、.若點(diǎn)在函數(shù)的圖象上,則使得的面積為的點(diǎn)的個(gè)數(shù)為()A. B. C. D.4.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.85.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知,,若,則向量在向量方向的投影為()A. B. C. D.7.已知函數(shù)且的圖象恒過定點(diǎn),則函數(shù)圖象以點(diǎn)為對稱中心的充要條件是()A. B.C. D.8.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個(gè)單位長度B.向右平移個(gè)單位長度C.向左平移個(gè)單位長度D.向右平移個(gè)單位長度9.復(fù)數(shù)()A. B. C.0 D.10.正方體,是棱的中點(diǎn),在任意兩個(gè)中點(diǎn)的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.611.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.12.設(shè)為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.14.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.15.設(shè),滿足條件,則的最大值為__________.16.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為__________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)的圖象與兩坐標(biāo)軸的交點(diǎn)分別為,若三角形的面積大于,求參數(shù)的取值范圍.18.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.19.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線,設(shè)點(diǎn)是曲線上不同兩點(diǎn),如果在曲線上存在點(diǎn),使得①;②曲線在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)存在“中值和諧切線”,當(dāng)時(shí),函數(shù)是否存在“中值和諧切線”請說明理由20.(12分)已知函數(shù)()(1)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的極值;(2)當(dāng)時(shí),對于任意,當(dāng)時(shí),不等式恒成立,求出實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)的取值范圍22.(10分)設(shè)等差數(shù)列的首項(xiàng)為0,公差為a,;等差數(shù)列的首項(xiàng)為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請計(jì)算,,;(2)設(shè),,試求,的表達(dá)式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.2、B【解析】
分別求得所有基本事件個(gè)數(shù)和滿足題意的基本事件個(gè)數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點(diǎn)睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個(gè)數(shù).3、C【解析】
設(shè)出點(diǎn)的坐標(biāo),以為底結(jié)合的面積計(jì)算出點(diǎn)到直線的距離,利用點(diǎn)到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,即,設(shè)點(diǎn)到直線的距離為,則,解得,另一方面,由點(diǎn)到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點(diǎn)共有三個(gè).故選:C.【點(diǎn)睛】本題考查三角形面積的計(jì)算,涉及點(diǎn)到直線的距離公式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.4、A【解析】
由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計(jì)算體積.【詳解】由三視圖知原幾何體是一個(gè)四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點(diǎn)睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.5、B【解析】
利用復(fù)數(shù)的四則運(yùn)算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為:,位于第二象限.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.6、B【解析】
由,,,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題7、A【解析】
由題可得出的坐標(biāo)為,再利用點(diǎn)對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過定點(diǎn)問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.8、D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因?yàn)?,所以只需將的圖象向右平移個(gè)單位.【點(diǎn)睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.9、C【解析】略10、B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點(diǎn)睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.11、D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、A【解析】
根據(jù)向量共線的性質(zhì)依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當(dāng)與共線,方向相反時(shí),,故不必要.故選:.【點(diǎn)睛】本題考查了向量共線,充分不必要條件,意在考查學(xué)生的推斷能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結(jié)果.【詳解】將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,則,由勾股定理可得,上述三個(gè)等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,根據(jù)三棱錐對棱長相等將三棱錐補(bǔ)成長方體是解答的關(guān)鍵,考查推理能力,屬于中等題.14、【解析】
分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個(gè)元素與其它兩個(gè)元素合起來全排列,同時(shí)它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點(diǎn)睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.15、【解析】
作出可行域,由得,平移直線,數(shù)形結(jié)合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當(dāng)直線經(jīng)過可行域內(nèi)的點(diǎn)時(shí),最小,此時(shí)最大.解方程組,得,..故答案為:.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,屬于基礎(chǔ)題.16、【解析】
令,則,恰有四個(gè)解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個(gè)解.有兩個(gè)解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負(fù)根為,由題意知,,,,則,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)當(dāng)時(shí),不等式可化為:,再利用絕對值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為,再利用三角形面積公式由求解.【詳解】(1)當(dāng)時(shí),不等式可化為:①當(dāng)時(shí),不等式化為,解得:②當(dāng)時(shí),不等式化為,解得:,③當(dāng)時(shí),不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查絕對值不等式的解法和絕對值函數(shù)的應(yīng)用,還考查分類討論的思想和運(yùn)算求解的能力,屬于中檔題.18、(1).(2).【解析】
(1)以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,則(﹣1,0,2),(﹣2,﹣1,1),計(jì)算夾角得到答案.(2)設(shè),0≤λ≤1,計(jì)算P(0,2λ,2﹣2λ),計(jì)算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計(jì)算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,∵AD=2,AB=AF=2EF=2,P是DF的中點(diǎn),∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設(shè)異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設(shè)P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設(shè)平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長度|PF|.【點(diǎn)睛】本題考查了異面直線夾角,根據(jù)二面角求長度,意在考查學(xué)生的空間想象能力和計(jì)算能力.19、(1)見解析(2)不存在,見解析【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)數(shù),結(jié)合導(dǎo)數(shù)的幾何意義,再令,轉(zhuǎn)化為方程有解問題,即可說明.【詳解】(1)函數(shù)的定義域?yàn)椋援?dāng)時(shí),;,所以函數(shù)在上單調(diào)遞增當(dāng)時(shí),①當(dāng)時(shí),函數(shù)在上遞增②,顯然無增區(qū)間;③當(dāng)時(shí),,函數(shù)在上遞增,綜上當(dāng)函數(shù)在上單調(diào)遞增.當(dāng)時(shí)函數(shù)在上單調(diào)遞增;當(dāng)時(shí)函數(shù)無單調(diào)遞增區(qū)間當(dāng)時(shí)函數(shù)在上單調(diào)遞增(2)假設(shè)函數(shù)存在“中值相依切線”設(shè)是曲線上不同的兩個(gè)點(diǎn),且則曲線在點(diǎn)處的切線的斜率為,.令,則,單調(diào)遞增,,故無解,假設(shè)不成立綜上,假設(shè)不成立,所以不存在“中值相依切線”【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的幾何意義,考查導(dǎo)數(shù)的應(yīng)用以及分類討論和轉(zhuǎn)化思想,屬于中檔題.20、(1)極小值為,極大值為.(2)【解析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域?yàn)?,,,,可知,,解得,,可知在,時(shí),,函數(shù)單調(diào)遞增,在時(shí),,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【點(diǎn)睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點(diǎn)在于對目標(biāo)式的變形,屬綜合性中檔題.21、(1)(2)【解析】
(1)零點(diǎn)分段法分,,三種情況討論即可;(2)只需找到的最小值即可.【詳解】(1)由.若時(shí),,解得;若時(shí),,解得;若時(shí),,解得;故不等式的解集為.(2)由,有,得,故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查絕對值不等式的解法以及不等式恒成立問題,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.22、(1)(2)詳見解析(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 班組安全生產(chǎn)三檢制度
- 村安全生產(chǎn)應(yīng)急制度
- 高新生產(chǎn)基地管理制度
- 新生兒安全生產(chǎn)制度
- 區(qū)安全生產(chǎn)公告制度
- 生產(chǎn)掃碼管理制度
- 冶金行業(yè)生產(chǎn)管理制度
- 煤礦生產(chǎn)技術(shù)會(huì)議制度
- 羅馬柱生產(chǎn)管理制度
- 服裝生產(chǎn)項(xiàng)目工作制度
- 夫妻債務(wù)約定協(xié)議書
- 腕關(guān)節(jié)綜合征
- 《貴州省水利水電工程系列概(估)算編制規(guī)定》(2022版 )
- JGJ256-2011 鋼筋錨固板應(yīng)用技術(shù)規(guī)程
- 上海建橋?qū)W院簡介招生宣傳
- 《智慧教育黑板技術(shù)規(guī)范》
- 《電力建設(shè)安全工作規(guī)程》-第1部分火力發(fā)電廠
- 歌曲《我會(huì)等》歌詞
- 八年級物理上冊期末測試試卷-附帶答案
- 小學(xué)英語五年級上冊Unit 5 Part B Let's talk 教學(xué)設(shè)計(jì)
- 學(xué)生校服供應(yīng)服務(wù)實(shí)施方案
評論
0/150
提交評論