三亞市重點中學(xué)2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第1頁
三亞市重點中學(xué)2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第2頁
三亞市重點中學(xué)2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第3頁
三亞市重點中學(xué)2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第4頁
三亞市重點中學(xué)2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

三亞市重點中學(xué)2026屆高二上數(shù)學(xué)期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在長方體中,,,則直線和夾角余弦值為()A. B.C. D.2.若數(shù)列的前n項和(n∈N*),則=()A.20 B.30C.40 D.503.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準(zhǔn)線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④4.已知數(shù)列滿足,,則的最小值為()A. B.C. D.5.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直6.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點,則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°7.已知一組數(shù)據(jù)為:2,4,6,8,這4個數(shù)的方差為()A.4 B.5C.6 D.78.已知角為第二象限角,,則的值為()A. B.C. D.9.若不等式組表示的區(qū)域為,不等式表示的區(qū)域為,向區(qū)域均勻隨機(jī)撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.10.直線的一個法向量為()A. B.C. D.11.如果向量,,共面,則實數(shù)的值是()A. B.C. D.12.已知函數(shù).設(shè)命題的定義域為,命題的值域為.若為真,為假,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義域上的單調(diào)遞增函數(shù),是的導(dǎo)數(shù)且為定義域上的單調(diào)遞減函數(shù),請寫出一個滿足條件的函數(shù)的解析式___________14.在等比數(shù)列中,若,,則數(shù)列的公比為___________.15.如圖是某賽季CBA廣東東莞銀行隊甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.16.如圖所示,將若干個點擺成三角形圖案,每條邊(包括兩個端點)有個點,相應(yīng)的圖案中點的個數(shù)記為,按此規(guī)律,則___________,___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的左、右焦點為,,,離心率為(1)求橢圓標(biāo)準(zhǔn)方程(2)的左頂點為,過右焦點的直線交橢圓于,兩點,記直線,,的斜率分別為,,,求證:18.(12分)如圖,三棱錐中,,,,,,點是PA的中點,點D是AC的中點,點N在PB上,且.(1)證明:平面CMN;(2)求平面MNC與平面ABC所成角的余弦值.19.(12分)已知圓,是圓上一點,過A作直線l交圓C于另一點B,交x軸正半軸于點D,且A為的中點.(1)求圓C在點A處的切線方程;(2)求直線l的方程.20.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個零點,,證明:21.(12分)如圖,五邊形為東京奧運會公路自行車比賽賽道平面設(shè)計圖,根據(jù)比賽需要,在賽道設(shè)計時需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(2)在上述條件下,如何設(shè)計才能使折線賽道(即)的長度最大,并求最大值22.(10分)(1)已知:方程表示雙曲線;:關(guān)于的不等式有解.若為真,求的取值范圍;(2)已知,,.若p是q的必要不充分條件,求實數(shù)m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】如圖建立空間直角坐標(biāo)系,分別求出的坐標(biāo),由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標(biāo)系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.2、B【解析】由前項和公式直接作差可得.【詳解】數(shù)列的前n項和(n∈N*),所以.故選:B.3、A【解析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標(biāo)準(zhǔn)形式得拋物線,故準(zhǔn)線方程是,故③正確;對于④選項,雙曲線化為標(biāo)準(zhǔn)形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A4、C【解析】采用疊加法求出,由可得,結(jié)合對勾函數(shù)性質(zhì)分析在或6取到最小值,代值運算即可求解.【詳解】因為,所以,,,,式相加可得,所以,,當(dāng)且僅當(dāng)取到,但,,所以時,當(dāng)時,,,所以的最小值為.故選:C5、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.6、B【解析】取AD中點為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補(bǔ)角,據(jù)此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補(bǔ)角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補(bǔ)角,當(dāng)∠EGF=60°時,∠FEG=60°,當(dāng)∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B7、B【解析】根據(jù)數(shù)據(jù)的平均數(shù)和方差的計算公式,準(zhǔn)確計算,即可求解.【詳解】由平均數(shù)的計算公式,可得,所以這4個數(shù)的方差為故選:B.8、C【解析】由同角三角函數(shù)關(guān)系可得,進(jìn)而直接利用兩角和的余弦展開求解即可.【詳解】∵,是第二象限角,∴,∴.故選:C.9、A【解析】作出兩平面區(qū)域,計算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進(jìn)而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點坐標(biāo)為點坐標(biāo)為坐標(biāo)為點坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機(jī)撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.10、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設(shè)法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.11、B【解析】設(shè),由空間向量的坐標(biāo)運算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設(shè),可得,解得.故選:B.12、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實數(shù)的取值范圍為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】由題意可得0,結(jié)合在定義域上為減函數(shù)可取.【詳解】因為在定義域為單調(diào)增函數(shù)所以在定義域上0,又因為在定義域上為減函數(shù),且大于等于0.所以可取(),(),滿足條件所以可為().故答案為:(答案不唯一).14、##【解析】求出等比數(shù)列的公比,利用定義可求得數(shù)列的公比.【詳解】設(shè)等比數(shù)列的公比為,則,因此,數(shù)列的公比為.故答案為:.15、58【解析】分別將甲、乙兩名運動員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因為甲、乙兩名籃球運動員各參賽11場,故中位數(shù)是第6個數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:5816、①.②.【解析】利用題中所給規(guī)律求出即可.【詳解】解:由圖可知,,,,,因為符合等差數(shù)列的定義且公差為所以,所以,故答案為:,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】(1)由可求出,結(jié)合離心率可知,進(jìn)而可求出,即可求出標(biāo)準(zhǔn)方程.(2)由題意知,,則由直線的點斜式方程可得直線的解析式為,與橢圓進(jìn)行聯(lián)立,設(shè),,結(jié)合韋達(dá)定理可得,從而由斜率的計算公式對進(jìn)行整理化簡從而可證明.【詳解】(1)解:因為,所以.又因為離心率,所以,則,所以橢圓的標(biāo)準(zhǔn)方程是(2)證明:由題意知,,,則直線的解析式為,代入橢圓方程,得設(shè),,則.又因為,,所以【點睛】關(guān)鍵點睛:本題第二問的關(guān)鍵是聯(lián)立直線和橢圓的方程后,結(jié)合韋達(dá)定理,用表示交點橫坐標(biāo)的和與積,從而代入進(jìn)行整理化簡.18、(1)證明見解析(2)【解析】建立如圖所示空間直角坐標(biāo)系,得到相關(guān)點和相關(guān)向量的坐標(biāo),(1)求出平面的法向量,利用證明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夾角公式即可求解.【小問1詳解】證明:三棱錐中,,,∴分別以,,,,軸建立如圖所示空間直角坐標(biāo)系∵,,點M是PA的中點,點D是AC的中點,點N在PB上且∴,,,,,設(shè)平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小問2詳解】,,∴平面∴為平面的法向量則與的夾角的補(bǔ)角是平面與平面所成二面角的平面角.∴平面與平面所成角的余弦值為.19、(1)(2)或【解析】(1)以直線方程的點斜式去求圓C在點A處的切線方程;(2)以A為的中點為突破口,設(shè)點法去求直線l的方程簡單快捷.【小問1詳解】圓可化為,圓心因為直線的斜率為,所以圓C在A點處切線斜率為2,所以切線方程為即.【小問2詳解】由題意設(shè)因為是中點,所以將B代入圓C方程得解得或當(dāng)時,,此時l方程為當(dāng)時,,此時l方程為所以l方程為或20、(1)函數(shù)的單調(diào)性見解析;(2)證明見解析.【解析】(1)求出函數(shù)的導(dǎo)數(shù),按a值分類討論判斷的正負(fù)作答.(2)將分別代入計算化簡變形,再對所證不等式作等價變形,構(gòu)造函數(shù),借助函數(shù)導(dǎo)數(shù)推理作答.【小問1詳解】已知函數(shù)的定義域為,,當(dāng)時,恒成立,所以在區(qū)間上單調(diào)遞增;當(dāng)時,由,解得,由,解得,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,所以,當(dāng)時,在上單調(diào)遞增,當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】依題意,不妨設(shè),則,,于是得,即,亦有,即,因此,,要證明,即證,即證,即證,即證,令,,,則有在上單調(diào)遞增,,,即成立,所以.【點睛】思路點睛:涉及雙變量的不等式證明問題,將所證不等式等價轉(zhuǎn)化,構(gòu)造新函數(shù),再借助導(dǎo)數(shù)探討函數(shù)的單調(diào)性、極(最)值問題處理.21、(1)服務(wù)通道的長為千米(2)時,折線賽道的長度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負(fù)值舍去)所以服務(wù)通道的長為千米【小問2詳解】在中,由余弦定理得:,即,所以因為,所以,所以,即(當(dāng)且僅當(dāng)時取等號)即當(dāng)時,折線賽道的長度最大,最大值為千米22、(1)1m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論