山東省泰安市泰安第四中學2026屆數(shù)學高一上期末達標檢測試題含解析_第1頁
山東省泰安市泰安第四中學2026屆數(shù)學高一上期末達標檢測試題含解析_第2頁
山東省泰安市泰安第四中學2026屆數(shù)學高一上期末達標檢測試題含解析_第3頁
山東省泰安市泰安第四中學2026屆數(shù)學高一上期末達標檢測試題含解析_第4頁
山東省泰安市泰安第四中學2026屆數(shù)學高一上期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省泰安市泰安第四中學2026屆數(shù)學高一上期末達標檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)在R上為減函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.2.已知冪函數(shù)過點則A.,且在上單調(diào)遞減B.,且在單調(diào)遞增C.且在上單調(diào)遞減D.,且在上單調(diào)遞增3.如圖,在三棱錐中,,分別為AB,AD的中點,過EF的平面截三棱錐得到的截面為EFHG.則下列結(jié)論中不一定成立的是()A. B.C.平面 D.平面4.設(shè),且,則()A. B.C. D.5.下列函數(shù)中最小正周期為的是A. B.C. D.6.光線由點P(2,3)射到直線上,反射后過點Q(1,1),則反射光線所在的直線方程為A. B.C. D.7.下列說法正確的是()A.若,,則 B.若a,,則C.若,,則 D.若,則8.設(shè)函數(shù)的定義域為R,滿足,且當時,.若對任意,都有,則m的最大值是()A. B.C. D.9.已知函數(shù),且函數(shù)恰有三個不同的零點,則實數(shù)的取值范圍是A. B.C. D.10.下列各角中,與126°角終邊相同的角是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)平面向量,,則__________.若與的夾角為鈍角,則的取值范圍是__________12.若函數(shù)y=loga(2-ax)在[0,1]上單調(diào)遞減,則a的取值范圍是________13.已知函數(shù)恰有2個零點,則實數(shù)m的取值范圍是___________.14.設(shè),,則______15.已知點角終邊上一點,且,則______16.設(shè),若存在使得關(guān)于x的方程恰有六個解,則b的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,三棱錐中,平面平面,,,(1)求三棱錐的體積;(2)在平面內(nèi)經(jīng)過點,畫一條直線,使,請寫出作法,并說明理由18.已知,.(1)求的值;(2)求的值.19.已知函數(shù)且為自然對數(shù)的底數(shù)).(1)判斷函數(shù)的奇偶性并證明(2)證明函數(shù)在是增函數(shù)(3)若不等式對一切恒成立,求滿足條件的實數(shù)的取值范圍20.已知,且函數(shù)是奇函數(shù).(1)求實數(shù)a的值;(2)判斷函數(shù)的單調(diào)性,并證明.21.已知函數(shù),它的部分圖象如圖所示.(1)求函數(shù)的解析式;(2)當時,求函數(shù)的值域.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)分段函數(shù)單調(diào)性,可得關(guān)于的不等式組,解不等式組即可確定的取值范圍.【詳解】函數(shù)在R上為減函數(shù)所以滿足解不等式組可得.故選:D【點睛】本題考查了分段函數(shù)單調(diào)性的應(yīng)用,根據(jù)分段函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于中檔題.2、A【解析】由冪函數(shù)過點,求出,從而,在上單調(diào)遞減【詳解】冪函數(shù)過點,,解得,,在上單調(diào)遞減故選A.【點睛】本題考查冪函數(shù)解析式的求法,并判斷其單調(diào)性,考查冪函數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.3、D【解析】利用線面平行的判定和性質(zhì)對選項進行排除得解.【詳解】對于,,分別為,的中點,,EF與平面BCD平行過的平面截三棱錐得到的截面為,平面平面,,,故AB正確;對于,,平面,平面,平面,故正確;對于,的位置不確定,與平面有可能相交,故錯誤.故選:D.【點睛】熟練運用線面平行的判定和性質(zhì)是解題的關(guān)鍵.4、C【解析】將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡單題目.5、A【解析】利用周期公式對四個選項中周期進行求解【詳解】A項中Tπ,B項中T,C項中T,D項中T,故選A【點睛】本題主要考查了三角函數(shù)周期公式的應(yīng)用.對于帶絕對值的函數(shù)解析式,可結(jié)合函數(shù)的圖象來判斷函數(shù)的周期6、A【解析】設(shè)點關(guān)于直線的對稱點為,則,解得,即對稱點為,則反射光線所在直線方程即:故選7、C【解析】結(jié)合特殊值、差比較法確定正確選項.【詳解】A:令,;,,則,,不滿足,故A錯誤;B:a,b異號時,不等式不成立,故B錯誤;C:,,,,即,故C正確;D:令,,不成立,故D錯誤.故選:C8、A【解析】分別求得,,,,,,,時,的最小值,作出的簡圖,因為,解不等式可得所求范圍【詳解】解:因為,所以,當時,的最小值為;當時,,,由知,,所以此時,其最小值為;同理,當,時,,其最小值為;當,時,的最小值為;作出如簡圖,因為,要使,則有解得或,要使對任意,都有,則實數(shù)的取值范圍是故選:A9、A【解析】函數(shù)恰有三個不同的零點等價于與有三個交點,再分別畫出和的圖像,通過觀察圖像得出a的范圍.【詳解】解:方程所以函數(shù)恰有三個不同的零點等價于與有三個交點記,畫出函數(shù)簡圖如下畫出函數(shù)如圖中過原點虛線l,平移l要保證圖像有三個交點,向上最多平移到l’位置,向下平移一直會有三個交點,所以,即故選A.【點睛】本題考查了函數(shù)的零點問題,解決函數(shù)零點問題常轉(zhuǎn)化為兩函數(shù)交點問題10、B【解析】寫出與126°的角終邊相同的角的集合,取k=1得答案【詳解】解:與126°的角終邊相同的角的集合為{α|α=126°+k?360°,k∈Z}取k=1,可得α=486°∴與126°的角終邊相同的角是486°故選B【點睛】本題考查終邊相同角的計算,是基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】(1)由題意得(2)∵與的夾角為鈍角,∴,解得又當時,向量,共線反向,滿足,但此時向量的夾角不是鈍角,故不合題意綜上的取值范圍是答案:;12、(1,2)【解析】分類討論得到當時符合題意,再令在[0,1]上恒成立解出a的取值范圍即可.【詳解】令,當時,為減函數(shù),為減函數(shù),不合題意;當時,為增函數(shù),為減函數(shù),符合題意,需要在[0,1]上恒成立,當時,成立,當時,恒成立,即,綜上.故答案為:(1,2).13、【解析】討論上的零點情況,結(jié)合題設(shè)確定上的零點個數(shù),根據(jù)二次函數(shù)性質(zhì)求m的范圍.【詳解】當時,恒有,此時無零點,則,∴要使上有2個零點,只需即可,故有2個零點有;當時,存在,此時有1個零點,則,∴要使上有1個零點,只需即可,故有2個零點有;綜上,要使有2個零點,m的取值范圍是.故答案為:.14、【解析】由,根據(jù)兩角差的正切公式可解得【詳解】,故答案為【點睛】本題主要考查了兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)知識的考查15、【解析】利用任意角的三角函數(shù)的定義,即可求得m值【詳解】點角終邊上一點,,則,故答案為【點睛】本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題16、【解析】作出f(x)的圖像,當時,,當時,.令,則,則該關(guān)于t的方程有兩個解、,設(shè)<,則,.令,則,據(jù)此求出a的范圍,從而求出b的范圍【詳解】當時,,當時,,當時,,則f(x)圖像如圖所示:當時,,當時,令,則,∵關(guān)于x的方程恰有六個解,∴關(guān)于t的方程有兩個解、,設(shè)<,則,,令,則,∴且,要存a滿足條件,則,解得故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】(1)取的中點,連接,因為,所以,由面面垂直的性質(zhì)可得平面,求出的值,利用三角形面積公式求出底面積,從而根據(jù)棱錐的條件公式可得三棱錐的體積;(2)在平面中,過點作,交于點,在平面中,過點作,交于點,連結(jié),則直線就是所求的直線,根據(jù)作法,利用線面垂直的判定定理與性質(zhì)可證明.試題解析:(1)取的中點,連接,因為,所以,又因為平面平面,平面平面,平面,所以平面,因為,,所以,因為,所以的面積,所以三棱錐的體積(2)在平面中,過點作,交于點,在平面中,過點作,交于點,連結(jié),則直線就是所求的直線,由作法可知,,又因為,所以平面,所以,即18、(1);(2).【解析】(1)利用誘導(dǎo)公式直接化簡即可,然后弦化切;(2)由(1)知,,對齊次式進行弦化切求值.【詳解】(1)∵而,∴∵,∴,∴,∴.(2)..【點睛】利用三角公式求三角函數(shù)值的關(guān)鍵:(1)角的范圍的判斷;(2)選擇合適的公式進行化簡求值19、(1)見解析;(2)見解析;(3).【解析】(1)定義域為,關(guān)于原點對稱,又,為奇函數(shù)(2)任取,,且,則===,又在上為增函數(shù)且,,,,在上是增函數(shù)(3)由(1)知在上為奇函數(shù)且單調(diào)遞增,由得由題意得,即恒成立,又.綜上得的取值范圍是點睛:本題是一道關(guān)于符合函數(shù)的題目,總體方法是掌握函數(shù)奇偶性和單調(diào)性的知識,屬于中檔題.在證明函數(shù)單調(diào)性時可以運用定義法證明,在解答函數(shù)中的不等式時,要依據(jù)函數(shù)的單調(diào)性,比較兩數(shù)大小,含有參量時要分離參量計算最值20、(1)(2)在上是減函數(shù),證明見解析【解析】(1)直接由解出,再把代入檢驗;(2)直接由定義判斷單調(diào)性即可.【小問1詳解】因為,函數(shù)奇函數(shù),所以,解得.此時,,,滿足題意.故.【小問2詳解】在上是減函數(shù).任取,,則,由∴,故在上是減函數(shù).21、(1);(2).【解析】(1)依題意,則,將點的坐標代入函數(shù)的解析式可得,故,函數(shù)解析式為.(2)由題意可得,結(jié)合三角函數(shù)的性質(zhì)可得函數(shù)的值域為.試題解析:(1)依題意,,故.將點的坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論