企業(yè)級(jí)智能體式AI實(shí)施指南白皮書(The+Enterprise+Guide+to+Agentic+AI)英-Cognizant_第1頁(yè)
企業(yè)級(jí)智能體式AI實(shí)施指南白皮書(The+Enterprise+Guide+to+Agentic+AI)英-Cognizant_第2頁(yè)
企業(yè)級(jí)智能體式AI實(shí)施指南白皮書(The+Enterprise+Guide+to+Agentic+AI)英-Cognizant_第3頁(yè)
企業(yè)級(jí)智能體式AI實(shí)施指南白皮書(The+Enterprise+Guide+to+Agentic+AI)英-Cognizant_第4頁(yè)
企業(yè)級(jí)智能體式AI實(shí)施指南白皮書(The+Enterprise+Guide+to+Agentic+AI)英-Cognizant_第5頁(yè)
已閱讀5頁(yè),還剩54頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

TheenterpriseguidetoAgenticAI

Frameworksforstrategicimplementationandvaluecreation

Abstract

Thiswhitepaperprovidesacomprehensiveframeworkforenterpriseadoptionof

AgenticAI,addressingthegapbetweenconsumer-gradeapplicationsandeffectiveenterpriseimplementation.Itoffersastrategicapproachtodecomposingcomplex

businessroles,orchestratingmulti-agentsystems,determiningappropriateautonomylevels,andimplementingsolutionsacrossindustryverticals.Throughdetailedanalysisandcasestudies,itdemonstrateshoworganizationscanmovebeyondrebranded

automationtoachievegenuinetransformationwithmeasurablebusinessoutcomes.

Tableofcontents

1.

Introduction

2.

Beyondautomation:TheagenticAIrevolution

3.

Buildingreliable,scalableagenticAIsolutions

4.

Strategicimplementationframework

5.

Industryimplementationcasestudies

6.

Conclusionandforwardoutlook

7.

References

Introduction

ThepromiseandrealityofagenticAIinenterprise

AgenticAIpromisestoinitiateanewS-curveofinnovation,compellingenterprises

toincorporateagenticsolutionsintotheirtransformationagendas.Whileconsumer-gradeagenticusecaseshavedemonstratedtransformativesuccess,enterprise

implementationshaveshownfewerbreakthroughresults.Mostenterprise

applicationshavemerelyrebrandedexistingautomationorAIsolutions.AsignificantgapexistsinunderstandingagenticAIand,morecritically,indesigningand

executingeffectiveagenticAIsolutions.

Objectivesofthiswhitepaper

ThiswhitepaperprovidesastrategicframeworkforimplementingagenticAIwith

afocusonpracticalexecution.Itexploreshoworganizationscandecompose

complexjobrolesintoagent-suitabletasks,orchestratemultipleagentswithina

cohesivesystem,anticipateandaddresscommonfailurepointsandgradually

evolvefromhuman-assistedtofullyautonomousoperations.Throughdetailedcasestudiesspanningbankingandfinancialservices(BFS),insurance,andfinanceand

accounting(F&A),thiswhitepaperwillattempttodemonstratehowagenticAI

transformsoperations,enhancesdecision-makinganddeliversmeasurablebusinessvalueevenastheunderlyingtechnologiescontinuetoevolve.

DefiningagenticAI

AgenticAIreferstoAIsystemsthatactasautonomousagentscapableof

understandingobjectives,makingdecisions,takingactionsandadaptingtheir

behaviortoachievespecifiedgoals.UnliketraditionalautomationorconventionalAIsystems,agenticAIpossesses:

Goal-orientedreasoning:Theabilitytounderstandobjectivesandreasonaboutthebestapproachestoachievethem

Autonomousdecision-making:Thecapacitytomakeindependentdecisionsbasedonavailableinformationandlearnedpatterns

Adaptability:Thecapabilitytoadjuststrategieswhenconfrontedwithchangingcircumstancesornewinformation

Collaborativeintelligence:TheabilitytoworkeffectivelywithhumansandotherAIagentstowardcommongoals

Self-improvement:Thecapacitytolearnfromexperiencesandoutcomestoenhancefutureperformance

3|TheenterpriseguidetoAgenticAI

4|TheenterpriseguidetoAgenticAI

Beyondautomation:TheagenticAIrevolution

EvolutionfromRPAtoagenticAI

Traditionalroboticprocessautomation(RPA)excelsatexecutingpredefined,rules-

basedtaskswithhighefficiencybutlacksadaptability.Ingeneral,thesuccessofRPAhasbeenlimitedbecauseithaslackedabilitytoreasonandtoquicklyadapttoan

ever-changingbusinessandprocesslandscape.AI-enhancedautomationbrings

intelligencethroughmachinelearningbutstilloperateswithinconfinedparameters.

So,whileAIsolutionshaveexcelledinpredictingandprescribingoutcomesand

actions,itstillhadminimaltonoabilitytoadapt,beautonomous,toreasonandto

interactwithitsecosystem.Ontheotherhand,agenticAIrepresentsatransformativeleap—autonomousentitiesthatunderstandobjectives,adapttochangingconditionsandcollaborateeffectivelywithhumansandotheragents.WhileanAIagentdoesn’tneedtonecessarilyuselargelanguagemodels(LLMs)orlargereasoningmodels

(LRMs),leveragingLLMsandLRMsdogivetheagentstheabilitytoreasontherebydrivingmoreautonomy.

Considertransactionmonitoringinbanking:RPAmightflagtransactionsthatmatchpredefinedpatterns,whileAIautomationmightdetectanomaliesbasedonhistoricaldata.AgenticAI,however,wouldproactivelyinvestigatesuspiciousactivities,gatherrelevantcontext,collaboratewithotheragentstoestablishacomprehensiverisk

profileandadaptivelyrefineitsapproachbasedonoutcomes.

Comparativeframework

ThedifferencesbetweenRPAautomation,AIautomationandagenticautomationcanbewellunderstoodinthefollowingdimensions:

Dimension

TraditionalRPA

AIautomation

AgenticAI

Decision

intelligence

Rules-baseddecisions

Patternrecognitionandpredictions

Goal-orientedreasoningandadaptivedecision-making

Autonomy

Executes

predefined

processes

Learnsfromdatabutlimitedadaptability

Autonomouspursuitof

goals,adaptingtochangingcircumstances

Versatility

Task-specific

Domain-specific

Cross-domaincapable

Human

interaction

Requireshuman

triggersand

exceptionhandling

Requireshumanoversightand

intervention

Collaborateswithhumansasintelligentpartners

Knowledgeutilization

Limitedto

programmedlogic

Utilizestrainingdatapatterns

Integratesdomainknowledge,context,andexperience

5|TheenterpriseguidetoAgenticAI

ThebusinesscaseforagenticAI

TheshifttowardagenticAIisstrategicandnotmerelytechnological.EnterprisesshouldseriouslyconsideragenticAItodeliverthebelowbenefits:

Enhancedadaptability:Agentscannavigatecomplex,dynamicenvironmentswithoutconstantreprogramming

Improveddecisionquality:Byconsideringmultifacetedcontextsandcollaboratingwithotheragents

Reducedhumancognitiveload:Handlingroutineandcomplextaskswhileescalatingonlywhennecessary

Acceleratedinnovation:Enablingrapidexperimentationandimplementationofnewprocesses

BuildingreliableandscalableagenticAIsolutionsCoreimplementationprinciples

ThelackofwidespreadsuccessofagenticAIsolutionshaslesstodowiththe

technologylimitationsbutmoretodowiththeenterpriseapproachtoimplementingitsagenticAIprogram.Itisimportanttofocusonthefollowing—ratherobviousbut

oftenlessthoughtthrough—aspectswhilebuildingenterprise-gradeagenticAIsolutions:

1.Agentreliability:AIagentsneedtofunctionconsistentlyanddeliveraccurateresults

2.Integrations:Moreoftenthannot,theagentswouldbeintroducedinacomplex

ecosystemwhichincludesmultipleexternaltoolsandAPIs.Akeyaspectofthesuccessofanagentisthereforetheinvestmentinappropriateprotocolsthatallowseamless

integrationandinteractionwithothertools,agentsandAPIs.

3.ROI-drivenautomation:JustbecauseagenticAIispowerfulandinvogue,wedon’tneedtoforcefitagenticAIasthesolutiontoeverysingleautomationopportunity.Simpleruleset-

basedautomationscanworkseamlesslyandprovidebetterROIforsimpleautomations.

4.Avoidoverengineeringandavoidfeaturecreep:Keepsolutionssimpleandavoidaddingunnecessarycomplexity.Itisalsoimportanttoresisttheurgetoaddtoomanyfeatures,whichcandilutefocusandeffectiveness.

5.Securitymeasures:AIjailbreaksareascommonandprevalentasarethenewsolutions.WemightveryeasilygetintoarecursiveproblemwhereAIagentsaretryingtobreak

otherAIagents.ThisisarealthreatandcannotonlyshutdowntheAIprogrambutcancauseseriousfinancialandreputationaldamageunlessthereisconsciousinvestmentinAIsecurityprotocolsandtools.

6.Avoidingcommonpitfalls:AgenticAIprogramsfacechallengessimilartotraditional

automationwhenuser-centricdesignisoverlooked.Commonissuesincludethelackofuser-feedbackloopsanderror-handlingmechanisms,whicharecrucialforimproving

functionalityanddeliveringabetteruserexperience.

Understandingmodelcontext

protocolanditspotentialrolein

thesuccessofagenticAIsolutions

AgenticAI,whichextensivelyrelyon

LLMsinteractingwithexternalservices,benefitsfromhavingastandardized

protocolthatgovernstheseinteractions.Thisledtotheintroductionofthe

“ModelContextProtocol(MCP)”.MCP

wasfirstintroducedbyAnthropicasanopen-sourceinitiativeinNovember2024.

WhilebasicLLMscouldonlypredicttext,enablingthemtoperformtasksrequired

LLMstobeconnectedtoexternaltoolsandAPIs.Inthecontextofagentic

AI,enablingthisconnectioniskeyto

makingtheagentusefulandscalable.

Amodelcontextprotocolintroducesa

standardizedprotocolthateliminates

thecomplexityofconnectingtomultipletools.Itactsasaunifiedlayerthat

translatesbetweenLLMsandexternaltools,simplifyingtheirintegration.

MCP’sroleinenterpriseagenticsystems

MCPecosystemtypicallyincludes:

?MCPclient:User-facingapps

?Protocol:Standardizedcommunicationbetweenclientsandservers

?MCPserver:TranslatestoolcapabilitiesfortheLLM

?Service:Theactualexternaltoolordatabasebeingaccessed

ItisimportanttonotethattheMCP

standardshaven’treachedastageof

maturityandisyettoseewidespread

adoption.Therehavealsobeen

concernsregardingperformanceand

latencyduringinteractions.However,

justliketheinternetwouldn’thavescaledwithoutaprotocollike“

HTTP

,”agentic

AIwon’tscalewithoutastandardlikeMCP.So,whileanewstandardmightreplaceMCP,thereisdefinitelyacaseforenterprisestostartusingtheMCPstandardnow.

6|TheenterpriseguidetoAgenticAIs

7|TheenterpriseguidetoAgenticAI

Strategicimplementationframework

Decomposingrolesintoagent-suitabletasks

Traditionaljobrolestypicallyencompassacomplex(orinmostcases“complicated”)matrixofresponsibilities,skillsandknowledge.Toeffectivelyimplementagent-

basedautomation,itisessentialtobreakdowncomplexjobrolesintodiscrete,

agent-suitabletasks.Thisrequiresacombinationofmethodologicalrigorand

hierarchicaldecomposition,ensuringthatagentscanhandletaskseffectivelywhilepreservingthesynergyoftheoriginaljobroles.Currentapproachesleverageseveralmethodologiesasbelow:

1.Agent-orientedmethodologies(AOM):AOMextendsobject-orientedand

knowledgeengineeringtechniquesbyincorporatingagent-specificattributessuchasbeliefs,desires,intentionsandcommitments.Thesemethodologies

enablethedecompositionoftasksthrough:

Object-orientedextensions:Usecase

analysisandCRC(class-responsibility-

collaboration)cardsidentifyagentsandtheirroles,extendingtraditionalmodelstoincludeagent-specificmentalstates

Knowledgeengineeringextensions:Modelthecognitiveandsocialdimensionsof

agentstocapturenuancesnotcoveredbytraditionalapproaches

2.Multi-agentsystems(MAS):

Multi-agentsystemsenablemultiple

agentstocollaborateincompleting

complexworkflows.Thisapproach

becomesparticularlyvaluablewhen

tasksrequirespecializedexpertise,

coordinationanddynamicadaptation.

Taskgranularity:Tasksaredividedamongspecializedagents,ensuringthatcomplexprocessesarehandledeffectively

Coordinationframeworks:

Orchestrationplatformsfacilitateseamlesstaskdelegationandcollaboration

betweenagents

3.Role-baseddecompositionenhancedbydecompositionspectrum:

Role-baseddecompositioninvolvesbreakingdownjobrolesintospecificfunctions,skillsandworkflows.

Thedecompositionspectrumaddsahierarchicalframeworktothis

methodology,refiningtheprocessasfollows:

Macro-leveldecomposition:This

levelbreaksdownentirejobrolesintomajorfunctionalareas.Itcorrespondstofunctionalanalysisinrole-based

decompositionbymappinghigh-levelresponsibilitiestoagentcapabilities.

Forexample,ininsuranceunderwriting,thisstepmightinvolvesegmentingtheroleintodatacollection,riskanalysis

andpolicyrecommendations.

Meso-leveldecomposition:Atthislevel,

functionalareasarefurtherdividedinto

specificprocessesthatdefinehowtasks

areexecuted.Thisalignswithworkflow

analysis,wherethesequentialandparallelworkflowsofajobrolearemappedto

agenttasks.Forinstance,riskanalysisinunderwritingcouldbedividedintodatavalidation,riskscoringandcompliancechecks.

Microleveldecomposition:Themost

granularlevelidentifiesdiscretetasks

withinprocessesandmapsthemto

agentcapabilities.Thiscorrespondsto

skillmapping,wherethenecessaryagentskillsarealignedwithtaskrequirements.

Forexample,datavalidationmightbefullyautomatedthroughAIagentscapableofdocumentparsingandanomalydetection.

Aligningdecompositionwithagentcapabilities:

Theoptimaldecompositionleveldependsonthecomplexityofthetask,the

maturityofavailableagentcapabilitiesandtheextentofrequiredhumanoversight.Forhighlystructuredtasks,microleveldecompositionallowsforfullautomation,

whilemorenuancedprocessesmayrequiremeso-leveldecompositionwithagent-humancollaboration.

Anintegratedapproachtotaskdecomposition:

Amongtheabovemethodologies,therole-baseddecompositioncombinedwiththemulti-agentsystemsforcomplexworkflowswouldberecommended.ThehierarchicaldecompositionspectrumiseasytounderstandandvisualizefordomainandprocessSMEsandthetechnologistscanenabletheMASframeworktocreateacollaborativeagentframework.

Agentorchestrationandcoordinationstrategies

Agentorchestration,i.e.,thecoordinationofmultipleagentstowardcommongoals,iswhattransformsdiscreteintelligententitiesintoacohesive,business-value-

generatingsystem.Effectiveorchestrationrequires:

Clearroledefinition:eachagent’sresponsibilitiesandboundaries

Communicationprotocols:howagentsshareinformationandcoordinateactions

Prioritizationmechanisms:howtasksareprioritizedacrossagents

Exceptionhandling:howsystemfailuresandedgecasesaremanaged

Performancemonitoring:howagenteffectivenessismeasuredandimproved

8|TheenterpriseguidetoAgenticAI

9|TheenterpriseguidetoAgenticAI

Orchestrationpatterns:

Severalorchestrationpatternshaveemerged,eachwithdistinctadvantages:

1.Supervisor-basedorchestration:Inthispattern,acentralsupervisoragentcoordinatestheactivitiesofmultiplespecializedagents.Asanexample,AmazonBedrock’smulti-

agentcollaborationframeworkusesasupervisoragenttomanagespecializedagents,improvingtasksuccessratesandefficiency.

Supervisor

SpecialistA

SpecialistC

SpecialistB

Advantages:

?Centralizedcontrolandmonitoring

?Simplifiedtaskallocationandprioritization

?Clearaccountability

Challenges:

?Potentialbottlenecksatthesupervisorlevel?Singlepointoffailure

Thispatternworkswellforcomplexworkflowsrequiringtightcoordination,suchasfinancialclosingprocesseswheremultiplespecializedagentsmustoperateinsequence.

2.Sequentialpipelines:Thisstrategyinvolvesorganizingagentsinalinearsequencewhereeachagentperformsaspecificsubtaskandpassestheresulttothenextagent.Asan

example,CrewAI’sblogwritingpipelinewhereplanner,writerandeditoragentsworkinsequencetoproduceafinalarticle.

AgentAAgentBAgentC

Advantages:

?Clearworkflow

?Easytounderstandandimplement

?Suitablefortaskswithlinearprogression

Challenges:

?Limitedapplication

?Failurepointononeagentcancauseunexpectedresultsinthesubsequentagent(s)

10|TheenterpriseguidetoAgenticAI

3.Peer-to-peerorchestration:Inthispattern,agentscoordinatedirectlywitheachother.

Asanexample,Fetch.ai’smulti-agenteconomicplatformenablesautonomouseconomicagentstodirectlynegotiatewitheachotherindecentralizedmarketplaceswithoutcentralcoordination.Theseagentsrepresentvariousstakeholders(consumers,providers,data

owners)andconductpeer-to-peertransactionsandinformationexchanges,improvingresourceallocationefficiencyandreducingcentralbottlenecks.

AgentAAgentB

AgentCAgentD

Advantages:

?Nocentralbottleneck

?Greaterresiliencetoindividualagentfailures

?Moreflexibleadaptationtochangingconditions

Challenges:

?Morecomplexcoordinationlogic?Potentialforconflictingactions

Thispatterniseffectivefordistributedsystemswhereagentsneedtorespondquicklytolocalconditions,suchasfrauddetectionsystemswheremultiplemonitoringagentsmayneedtocollaboraterapidly.

4.Hybridorchestration:Mostmatureagenticsystemsemployhybridapproaches,

combiningelementsofbothpatterns.Asanexample,Microsoft’sProjectBonsaicombinesbothcentralizedandpeer-to-peerapproachesinindustrialcontrolsystems.Ahigh-level

orchestratoragentdeterminesoverallmanufacturingstrategieswhileallowingspecializedprocesscontrolagentstocommunicatedirectlywitheachotherduringcriticalreal-time

operations.Thishybridapproachmaintainsstrategicoversightwhileenablingrapidlocalresponsestochangingconditions,resultingina25%increaseinproductionefficiencyinpilotimplementations.

Supervisor

SpecialistA

SpecialistC

SpecialistB

Humanexpert

Thisapproachallowsforbothcentralizedcoordinationanddirectagent-to-agentcommunication,withstrategichumaninvolvementwhereneeded.

11|TheenterpriseguidetoAgenticAI

Advantages:

?Combinescentralizedoversightwithlocalautonomy

?Moreresilientthanpurelycentralizedapproaches

?Moreorganizedthanpurelypeer-to-peersystems

?Adaptabletovarioustaskcomplexities

?Scalableforlargeagentecosystems

Challenges:

?Higherimplementationcomplexity

?Requirescarefulboundarydefinitionbetweencentralizedandpeer-to-peercomponents

?Morecomplexdebuggingandmonitoring

?Potentialforcommunicationoverhead

?Riskofcoordinationconflictsbetweenlocalandglobaldecision-making

5.Graph-basedorchestration:Graph-basedorchestrationrepresentsagentsandtheir

interactionsasanetworkofnodes(agents)andedges(communicationpathways),

enablingdynamicandnon-linearworkflows.Forexample,AWSusesagraph-based

modelinitsagentinteractionframeworktosupportcomplexcoordinationpatternsandenhancescalabilityacrossdistributedsystems.

Supervisoragent

Decisionagent

Dataagent

Analysisagent

ActionMonitoring

agentagent

Primaryflow

Secondaryflow

●Agentnode

Advantages:

?Supportscomplexworkflowswithnon-linearinteractions

?Allowsfordynamicadaptation

?Enhancesscalability

Challenges:

?Increasedcomplexityincreating,

maintaininganddebuggingthe

interactiongraphasthesystemscales

?Difficultyindynamicallymodifyingthe

graphstructureduringruntimetoadapttochangingenvironments

?Computationaloverheadandpotential

performancebottleneckswhentraversingcomplexgraphswithmanynodes

andedges

12|TheenterpriseguidetoAgenticAI

Communicationprotocols:

Effectiveinteragentcommunicationiscrucialforcoordination.Keyprotocolsinclude:

?Agentcommunicationprotocols,originallyformalizedthroughAgentCommunication

Languages(ACLs)suchasKQMLandFIPA-ACL,providedstructuredsemanticsand

intent-drivenmessagingbetweenagents.Whilethesefoundationalmodelsintroduced

keyconceptsinagentinteraction,modernmulti-agentsystems,especiallythosebuiltonLLMs,relyonmorescalableandlightweightmethodssuchasRESTfulAPIs,eventbuses,WebSockets,andmessagequeues(e.g.Kafka,RabbitMQ)toenableasynchronous,tool-integratedanddynamicagentcommunication

?Publish/subscribeparadigmthatdecouplespublishers(agentsthatgeneratemessages)

fromsubscribers(agentsthatreceivemessages),supportingasynchronouscommunication

Visualizationandmonitoring:

Effectiveorchestrationrequiresvisibilityintoagentactivitiesandsystemperformance.Modernagentorchestrationplatformsoffer:

Processvisualization:Real-timeviewsofagentworkflowsandactivities

Performancedashboards:Metricsonagenteffectiveness,efficiencyandoutcomes

Exceptionqueues:Interfacesforaddressingcasesrequiringhumanintervention

Audittrails:Comprehensiverecordsofagentactionsanddecisions

Thesecapabilitiesenableorganizationstomonitor,troubleshootandcontinuouslyimprovetheiragenticsystems.

DeterminingappropriateautonomylevelsforAIagents

Notalltasksaresuitableforfullyautonomousagenticautomation.Determiningtheappropriatelevelofautonomyandhumanoversightiscrucialforbalancingefficiencywithreliability,

handlingexceptionsandmaintainingcompliance.HerearekeyguidelinesfordeterminingthelevelofautomationusingagenticAI:

Dataqualityandintegrity:Humanoversightisessentialforensuringtheaccuracyand

completenessofdatainputs.Regularauditsanddataqualitychecksshouldbeperformedbyhumanexpertstomaintaindataintegritythroughoutautomatedprocesses.

Exceptionhandling:Humansshouldbeinvolvedinmanagingcasesthatfalloutsidethe

parametersofautomatedsystems.Organizationsmustestablishclearescalationpathsforcomplexorunusualcasesthatrequirehumanjudgmentandintervention.

Regulatorycompliance:Humanexpertsmustensurethatautomatedprocessescomplywith

industryregulationsandstandards.Regularcomplianceauditsandupdatesto\automated

systemsshouldbeoverseenbyhumanspecialiststopreventviolationsandmaintainadherencetoevolvingrequirements.

Systemmonitoring:Organizationsshouldimplementcontinuousmonitoringsystemsfor

automatedprocesses.Humanexpertsshouldreviewsystemperformancemetricsandaddressanyanomaliesorissuespromptlytopreventcascadingfailures.

13|TheenterpriseguidetoAgenticAI

Decisionvalidation:Forcriticaldecisions,organizationsshouldimplementahuman-in-the-

loopapproachwhereAIrecommendationsarevalidatedbyhumanexpertsbeforeexecutiontoensureappropriateoutcomes.

Environmentpredictability:ThetaskenvironmentmustbereasonablypredictableforAI

agentstofunctioneffectivelywithoutconstanthumanintervention.Taskswithhighvariabilityoruncertaintymayrequiregreaterhumanoversight.

Riskevaluationandconsequenceseverity:Organizationsshouldimplementahuman-in-the-loopapproachfortaskswhereerrorscouldhavemoderateimpacts.Stronghumanoversightshouldbemaintainedfortaskswhereerrorscouldleadtosignificantfinancial,legalor

reputationaldamage.

Audittrails:Organizationsshouldensurethatautomatedsystemscanprovide

comprehensiveaudittrailsandclearexplanationsfordecisionsmadetosupportregulatorycomplianceandprocesstransparency.

Dataavailabilityandquality:Organizationsneedtoassesstheavailabilityandqualityofdatarequiredforagenttrainingandautomation.

Higherlevelsofautonomyaresuitablewhenhigh-quality,comprehensivedataisavailabletotrainandoperateAIsystemseffectively.

Humanvalue-add:Organizationsshouldconsiderwhetherhumanjudgmentaddssignificantvaluetothetask.Tasksrequiringcreativity,empathy,ethicaljudgmentorcomplexcontextualunderstandingmayrequiremoresubstantialhumaninvolvement.

Thisassessmentframeworkhelpsprioritizetasksforappropriatelevelsofhuman

involvement.Forexample,routinedatareconciliationscoreshighondefinability

andpredictabilitywithlowconsequenceseverity,makingitidealforfullautonomyofagenticautomation.Incontrast,complexfraudinvestigationsmightrequire

significanthumancollaborationgiventheirunpredictabilityandhighconsequenceseverity.

Implementationroadmapacrosstheautonomyspectrum

AgenticAIimplementationexistsonaspectrumfromhuman-ledtofullyautonomous:

Copilot(human-led):

Agentsprovidesuggestionsandsupport,buthumansmakedecisionsandtakeactions

Collaboration(sharedcontrol):

Agentshandleroutinetasksautonomouslybutescalatecomplexcasestohumans

Supervision(agent-led):

Agentsoperateautonomouslywithhumanoversightandinterventioncapabilities

Autonomy(agent-driven):

Agentsoperateindependentlywithminimalhumaninvolvement

Forcomplexusecases,organizationsshouldprogressdeliberatelyalongthisspectrum,buildingtrustandcapabilitiesateachstage:

Phase1:Foundationbuilding

?Identifyhigh-valueusecases

?Conducttasksuitabilityassessments

?Developinitialagentprototypes

?Establishgovernanceframeworks

?Implementchangemanagementprograms

Phase2:Copilotdeployment

?Deployinitialagentsincopilotmode

?Establishfeedbackmechanisms

?Collectperformancedata

?Refineagentcapabilities

?Builduserconfidence

Phase3:Collaborativeautonomy

?Transitionsuitabletaskstocollaborativemode

?Implementinteragentcommunication

?Developorchestrationcapabilities

?Refineexceptionhandling

?Enhancemonitoringandanalytics

Phase4:Supervisedautonomy

?Expandagentautonomywithhumansupervision

?Implementadvancedorchestrationpatterns

?Developpredictivecapabilities

?Enhanceself-healingmechanisms

?Optimizesystemperformance

Phase5:Intelligententerprise

?Deployfullyautonomousagentswhereappropriate

?Implementadvancedlearningandadaptation

?Developcross-domaincapabilities

?Optimizehuman-agentcollaboration

?Continuouslyevolvethesystem

14|TheenterpriseguidetoAgenticAI

15|TheenterpriseguidetoAgenticAI

Real-worldcasestudies:Industryimplementation

casestudies

HavingestablishedtheconceptualfoundationsofagenticAI—fromitsdistinctive

capabilitiesbeyondtraditionalautomationtoframeworksfordecomposingroles,

determiningappropriateautonomylevelsandorchestratingmultipleagents—

wenowturntopracticalimplementation.Thefollowingindustry-specificcasestudies

demonstratehowthesetheoreticalprinciplestranslateintotangiblebusinessoutcomes.

EachusecaseillustratesthecompletejourneyofagenticAIimplementation:fromproblemidentificationandtaskdecompositiontoagentorchestrationstrategies

andmeasurableresults.Theseexamplesprovidenotjustconceptualvalidationbutactionableblueprintsthator

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論