版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TheenterpriseguidetoAgenticAI
Frameworksforstrategicimplementationandvaluecreation
Abstract
Thiswhitepaperprovidesacomprehensiveframeworkforenterpriseadoptionof
AgenticAI,addressingthegapbetweenconsumer-gradeapplicationsandeffectiveenterpriseimplementation.Itoffersastrategicapproachtodecomposingcomplex
businessroles,orchestratingmulti-agentsystems,determiningappropriateautonomylevels,andimplementingsolutionsacrossindustryverticals.Throughdetailedanalysisandcasestudies,itdemonstrateshoworganizationscanmovebeyondrebranded
automationtoachievegenuinetransformationwithmeasurablebusinessoutcomes.
Tableofcontents
1.
Introduction
2.
Beyondautomation:TheagenticAIrevolution
3.
Buildingreliable,scalableagenticAIsolutions
4.
Strategicimplementationframework
5.
Industryimplementationcasestudies
6.
Conclusionandforwardoutlook
7.
References
Introduction
ThepromiseandrealityofagenticAIinenterprise
AgenticAIpromisestoinitiateanewS-curveofinnovation,compellingenterprises
toincorporateagenticsolutionsintotheirtransformationagendas.Whileconsumer-gradeagenticusecaseshavedemonstratedtransformativesuccess,enterprise
implementationshaveshownfewerbreakthroughresults.Mostenterprise
applicationshavemerelyrebrandedexistingautomationorAIsolutions.AsignificantgapexistsinunderstandingagenticAIand,morecritically,indesigningand
executingeffectiveagenticAIsolutions.
Objectivesofthiswhitepaper
ThiswhitepaperprovidesastrategicframeworkforimplementingagenticAIwith
afocusonpracticalexecution.Itexploreshoworganizationscandecompose
complexjobrolesintoagent-suitabletasks,orchestratemultipleagentswithina
cohesivesystem,anticipateandaddresscommonfailurepointsandgradually
evolvefromhuman-assistedtofullyautonomousoperations.Throughdetailedcasestudiesspanningbankingandfinancialservices(BFS),insurance,andfinanceand
accounting(F&A),thiswhitepaperwillattempttodemonstratehowagenticAI
transformsoperations,enhancesdecision-makinganddeliversmeasurablebusinessvalueevenastheunderlyingtechnologiescontinuetoevolve.
DefiningagenticAI
AgenticAIreferstoAIsystemsthatactasautonomousagentscapableof
understandingobjectives,makingdecisions,takingactionsandadaptingtheir
behaviortoachievespecifiedgoals.UnliketraditionalautomationorconventionalAIsystems,agenticAIpossesses:
Goal-orientedreasoning:Theabilitytounderstandobjectivesandreasonaboutthebestapproachestoachievethem
Autonomousdecision-making:Thecapacitytomakeindependentdecisionsbasedonavailableinformationandlearnedpatterns
Adaptability:Thecapabilitytoadjuststrategieswhenconfrontedwithchangingcircumstancesornewinformation
Collaborativeintelligence:TheabilitytoworkeffectivelywithhumansandotherAIagentstowardcommongoals
Self-improvement:Thecapacitytolearnfromexperiencesandoutcomestoenhancefutureperformance
3|TheenterpriseguidetoAgenticAI
4|TheenterpriseguidetoAgenticAI
Beyondautomation:TheagenticAIrevolution
EvolutionfromRPAtoagenticAI
Traditionalroboticprocessautomation(RPA)excelsatexecutingpredefined,rules-
basedtaskswithhighefficiencybutlacksadaptability.Ingeneral,thesuccessofRPAhasbeenlimitedbecauseithaslackedabilitytoreasonandtoquicklyadapttoan
ever-changingbusinessandprocesslandscape.AI-enhancedautomationbrings
intelligencethroughmachinelearningbutstilloperateswithinconfinedparameters.
So,whileAIsolutionshaveexcelledinpredictingandprescribingoutcomesand
actions,itstillhadminimaltonoabilitytoadapt,beautonomous,toreasonandto
interactwithitsecosystem.Ontheotherhand,agenticAIrepresentsatransformativeleap—autonomousentitiesthatunderstandobjectives,adapttochangingconditionsandcollaborateeffectivelywithhumansandotheragents.WhileanAIagentdoesn’tneedtonecessarilyuselargelanguagemodels(LLMs)orlargereasoningmodels
(LRMs),leveragingLLMsandLRMsdogivetheagentstheabilitytoreasontherebydrivingmoreautonomy.
Considertransactionmonitoringinbanking:RPAmightflagtransactionsthatmatchpredefinedpatterns,whileAIautomationmightdetectanomaliesbasedonhistoricaldata.AgenticAI,however,wouldproactivelyinvestigatesuspiciousactivities,gatherrelevantcontext,collaboratewithotheragentstoestablishacomprehensiverisk
profileandadaptivelyrefineitsapproachbasedonoutcomes.
Comparativeframework
ThedifferencesbetweenRPAautomation,AIautomationandagenticautomationcanbewellunderstoodinthefollowingdimensions:
Dimension
TraditionalRPA
AIautomation
AgenticAI
Decision
intelligence
Rules-baseddecisions
Patternrecognitionandpredictions
Goal-orientedreasoningandadaptivedecision-making
Autonomy
Executes
predefined
processes
Learnsfromdatabutlimitedadaptability
Autonomouspursuitof
goals,adaptingtochangingcircumstances
Versatility
Task-specific
Domain-specific
Cross-domaincapable
Human
interaction
Requireshuman
triggersand
exceptionhandling
Requireshumanoversightand
intervention
Collaborateswithhumansasintelligentpartners
Knowledgeutilization
Limitedto
programmedlogic
Utilizestrainingdatapatterns
Integratesdomainknowledge,context,andexperience
5|TheenterpriseguidetoAgenticAI
ThebusinesscaseforagenticAI
TheshifttowardagenticAIisstrategicandnotmerelytechnological.EnterprisesshouldseriouslyconsideragenticAItodeliverthebelowbenefits:
Enhancedadaptability:Agentscannavigatecomplex,dynamicenvironmentswithoutconstantreprogramming
Improveddecisionquality:Byconsideringmultifacetedcontextsandcollaboratingwithotheragents
Reducedhumancognitiveload:Handlingroutineandcomplextaskswhileescalatingonlywhennecessary
Acceleratedinnovation:Enablingrapidexperimentationandimplementationofnewprocesses
BuildingreliableandscalableagenticAIsolutionsCoreimplementationprinciples
ThelackofwidespreadsuccessofagenticAIsolutionshaslesstodowiththe
technologylimitationsbutmoretodowiththeenterpriseapproachtoimplementingitsagenticAIprogram.Itisimportanttofocusonthefollowing—ratherobviousbut
oftenlessthoughtthrough—aspectswhilebuildingenterprise-gradeagenticAIsolutions:
1.Agentreliability:AIagentsneedtofunctionconsistentlyanddeliveraccurateresults
2.Integrations:Moreoftenthannot,theagentswouldbeintroducedinacomplex
ecosystemwhichincludesmultipleexternaltoolsandAPIs.Akeyaspectofthesuccessofanagentisthereforetheinvestmentinappropriateprotocolsthatallowseamless
integrationandinteractionwithothertools,agentsandAPIs.
3.ROI-drivenautomation:JustbecauseagenticAIispowerfulandinvogue,wedon’tneedtoforcefitagenticAIasthesolutiontoeverysingleautomationopportunity.Simpleruleset-
basedautomationscanworkseamlesslyandprovidebetterROIforsimpleautomations.
4.Avoidoverengineeringandavoidfeaturecreep:Keepsolutionssimpleandavoidaddingunnecessarycomplexity.Itisalsoimportanttoresisttheurgetoaddtoomanyfeatures,whichcandilutefocusandeffectiveness.
5.Securitymeasures:AIjailbreaksareascommonandprevalentasarethenewsolutions.WemightveryeasilygetintoarecursiveproblemwhereAIagentsaretryingtobreak
otherAIagents.ThisisarealthreatandcannotonlyshutdowntheAIprogrambutcancauseseriousfinancialandreputationaldamageunlessthereisconsciousinvestmentinAIsecurityprotocolsandtools.
6.Avoidingcommonpitfalls:AgenticAIprogramsfacechallengessimilartotraditional
automationwhenuser-centricdesignisoverlooked.Commonissuesincludethelackofuser-feedbackloopsanderror-handlingmechanisms,whicharecrucialforimproving
functionalityanddeliveringabetteruserexperience.
Understandingmodelcontext
protocolanditspotentialrolein
thesuccessofagenticAIsolutions
AgenticAI,whichextensivelyrelyon
LLMsinteractingwithexternalservices,benefitsfromhavingastandardized
protocolthatgovernstheseinteractions.Thisledtotheintroductionofthe
“ModelContextProtocol(MCP)”.MCP
wasfirstintroducedbyAnthropicasanopen-sourceinitiativeinNovember2024.
WhilebasicLLMscouldonlypredicttext,enablingthemtoperformtasksrequired
LLMstobeconnectedtoexternaltoolsandAPIs.Inthecontextofagentic
AI,enablingthisconnectioniskeyto
makingtheagentusefulandscalable.
Amodelcontextprotocolintroducesa
standardizedprotocolthateliminates
thecomplexityofconnectingtomultipletools.Itactsasaunifiedlayerthat
translatesbetweenLLMsandexternaltools,simplifyingtheirintegration.
MCP’sroleinenterpriseagenticsystems
MCPecosystemtypicallyincludes:
?MCPclient:User-facingapps
?Protocol:Standardizedcommunicationbetweenclientsandservers
?MCPserver:TranslatestoolcapabilitiesfortheLLM
?Service:Theactualexternaltoolordatabasebeingaccessed
ItisimportanttonotethattheMCP
standardshaven’treachedastageof
maturityandisyettoseewidespread
adoption.Therehavealsobeen
concernsregardingperformanceand
latencyduringinteractions.However,
justliketheinternetwouldn’thavescaledwithoutaprotocollike“
HTTP
,”agentic
AIwon’tscalewithoutastandardlikeMCP.So,whileanewstandardmightreplaceMCP,thereisdefinitelyacaseforenterprisestostartusingtheMCPstandardnow.
6|TheenterpriseguidetoAgenticAIs
7|TheenterpriseguidetoAgenticAI
Strategicimplementationframework
Decomposingrolesintoagent-suitabletasks
Traditionaljobrolestypicallyencompassacomplex(orinmostcases“complicated”)matrixofresponsibilities,skillsandknowledge.Toeffectivelyimplementagent-
basedautomation,itisessentialtobreakdowncomplexjobrolesintodiscrete,
agent-suitabletasks.Thisrequiresacombinationofmethodologicalrigorand
hierarchicaldecomposition,ensuringthatagentscanhandletaskseffectivelywhilepreservingthesynergyoftheoriginaljobroles.Currentapproachesleverageseveralmethodologiesasbelow:
1.Agent-orientedmethodologies(AOM):AOMextendsobject-orientedand
knowledgeengineeringtechniquesbyincorporatingagent-specificattributessuchasbeliefs,desires,intentionsandcommitments.Thesemethodologies
enablethedecompositionoftasksthrough:
Object-orientedextensions:Usecase
analysisandCRC(class-responsibility-
collaboration)cardsidentifyagentsandtheirroles,extendingtraditionalmodelstoincludeagent-specificmentalstates
Knowledgeengineeringextensions:Modelthecognitiveandsocialdimensionsof
agentstocapturenuancesnotcoveredbytraditionalapproaches
2.Multi-agentsystems(MAS):
Multi-agentsystemsenablemultiple
agentstocollaborateincompleting
complexworkflows.Thisapproach
becomesparticularlyvaluablewhen
tasksrequirespecializedexpertise,
coordinationanddynamicadaptation.
Taskgranularity:Tasksaredividedamongspecializedagents,ensuringthatcomplexprocessesarehandledeffectively
Coordinationframeworks:
Orchestrationplatformsfacilitateseamlesstaskdelegationandcollaboration
betweenagents
3.Role-baseddecompositionenhancedbydecompositionspectrum:
Role-baseddecompositioninvolvesbreakingdownjobrolesintospecificfunctions,skillsandworkflows.
Thedecompositionspectrumaddsahierarchicalframeworktothis
methodology,refiningtheprocessasfollows:
Macro-leveldecomposition:This
levelbreaksdownentirejobrolesintomajorfunctionalareas.Itcorrespondstofunctionalanalysisinrole-based
decompositionbymappinghigh-levelresponsibilitiestoagentcapabilities.
Forexample,ininsuranceunderwriting,thisstepmightinvolvesegmentingtheroleintodatacollection,riskanalysis
andpolicyrecommendations.
Meso-leveldecomposition:Atthislevel,
functionalareasarefurtherdividedinto
specificprocessesthatdefinehowtasks
areexecuted.Thisalignswithworkflow
analysis,wherethesequentialandparallelworkflowsofajobrolearemappedto
agenttasks.Forinstance,riskanalysisinunderwritingcouldbedividedintodatavalidation,riskscoringandcompliancechecks.
Microleveldecomposition:Themost
granularlevelidentifiesdiscretetasks
withinprocessesandmapsthemto
agentcapabilities.Thiscorrespondsto
skillmapping,wherethenecessaryagentskillsarealignedwithtaskrequirements.
Forexample,datavalidationmightbefullyautomatedthroughAIagentscapableofdocumentparsingandanomalydetection.
Aligningdecompositionwithagentcapabilities:
Theoptimaldecompositionleveldependsonthecomplexityofthetask,the
maturityofavailableagentcapabilitiesandtheextentofrequiredhumanoversight.Forhighlystructuredtasks,microleveldecompositionallowsforfullautomation,
whilemorenuancedprocessesmayrequiremeso-leveldecompositionwithagent-humancollaboration.
Anintegratedapproachtotaskdecomposition:
Amongtheabovemethodologies,therole-baseddecompositioncombinedwiththemulti-agentsystemsforcomplexworkflowswouldberecommended.ThehierarchicaldecompositionspectrumiseasytounderstandandvisualizefordomainandprocessSMEsandthetechnologistscanenabletheMASframeworktocreateacollaborativeagentframework.
Agentorchestrationandcoordinationstrategies
Agentorchestration,i.e.,thecoordinationofmultipleagentstowardcommongoals,iswhattransformsdiscreteintelligententitiesintoacohesive,business-value-
generatingsystem.Effectiveorchestrationrequires:
Clearroledefinition:eachagent’sresponsibilitiesandboundaries
Communicationprotocols:howagentsshareinformationandcoordinateactions
Prioritizationmechanisms:howtasksareprioritizedacrossagents
Exceptionhandling:howsystemfailuresandedgecasesaremanaged
Performancemonitoring:howagenteffectivenessismeasuredandimproved
8|TheenterpriseguidetoAgenticAI
9|TheenterpriseguidetoAgenticAI
Orchestrationpatterns:
Severalorchestrationpatternshaveemerged,eachwithdistinctadvantages:
1.Supervisor-basedorchestration:Inthispattern,acentralsupervisoragentcoordinatestheactivitiesofmultiplespecializedagents.Asanexample,AmazonBedrock’smulti-
agentcollaborationframeworkusesasupervisoragenttomanagespecializedagents,improvingtasksuccessratesandefficiency.
Supervisor
SpecialistA
SpecialistC
SpecialistB
Advantages:
?Centralizedcontrolandmonitoring
?Simplifiedtaskallocationandprioritization
?Clearaccountability
Challenges:
?Potentialbottlenecksatthesupervisorlevel?Singlepointoffailure
Thispatternworkswellforcomplexworkflowsrequiringtightcoordination,suchasfinancialclosingprocesseswheremultiplespecializedagentsmustoperateinsequence.
2.Sequentialpipelines:Thisstrategyinvolvesorganizingagentsinalinearsequencewhereeachagentperformsaspecificsubtaskandpassestheresulttothenextagent.Asan
example,CrewAI’sblogwritingpipelinewhereplanner,writerandeditoragentsworkinsequencetoproduceafinalarticle.
AgentAAgentBAgentC
Advantages:
?Clearworkflow
?Easytounderstandandimplement
?Suitablefortaskswithlinearprogression
Challenges:
?Limitedapplication
?Failurepointononeagentcancauseunexpectedresultsinthesubsequentagent(s)
10|TheenterpriseguidetoAgenticAI
3.Peer-to-peerorchestration:Inthispattern,agentscoordinatedirectlywitheachother.
Asanexample,Fetch.ai’smulti-agenteconomicplatformenablesautonomouseconomicagentstodirectlynegotiatewitheachotherindecentralizedmarketplaceswithoutcentralcoordination.Theseagentsrepresentvariousstakeholders(consumers,providers,data
owners)andconductpeer-to-peertransactionsandinformationexchanges,improvingresourceallocationefficiencyandreducingcentralbottlenecks.
AgentAAgentB
AgentCAgentD
Advantages:
?Nocentralbottleneck
?Greaterresiliencetoindividualagentfailures
?Moreflexibleadaptationtochangingconditions
Challenges:
?Morecomplexcoordinationlogic?Potentialforconflictingactions
Thispatterniseffectivefordistributedsystemswhereagentsneedtorespondquicklytolocalconditions,suchasfrauddetectionsystemswheremultiplemonitoringagentsmayneedtocollaboraterapidly.
4.Hybridorchestration:Mostmatureagenticsystemsemployhybridapproaches,
combiningelementsofbothpatterns.Asanexample,Microsoft’sProjectBonsaicombinesbothcentralizedandpeer-to-peerapproachesinindustrialcontrolsystems.Ahigh-level
orchestratoragentdeterminesoverallmanufacturingstrategieswhileallowingspecializedprocesscontrolagentstocommunicatedirectlywitheachotherduringcriticalreal-time
operations.Thishybridapproachmaintainsstrategicoversightwhileenablingrapidlocalresponsestochangingconditions,resultingina25%increaseinproductionefficiencyinpilotimplementations.
Supervisor
SpecialistA
SpecialistC
SpecialistB
Humanexpert
Thisapproachallowsforbothcentralizedcoordinationanddirectagent-to-agentcommunication,withstrategichumaninvolvementwhereneeded.
11|TheenterpriseguidetoAgenticAI
Advantages:
?Combinescentralizedoversightwithlocalautonomy
?Moreresilientthanpurelycentralizedapproaches
?Moreorganizedthanpurelypeer-to-peersystems
?Adaptabletovarioustaskcomplexities
?Scalableforlargeagentecosystems
Challenges:
?Higherimplementationcomplexity
?Requirescarefulboundarydefinitionbetweencentralizedandpeer-to-peercomponents
?Morecomplexdebuggingandmonitoring
?Potentialforcommunicationoverhead
?Riskofcoordinationconflictsbetweenlocalandglobaldecision-making
5.Graph-basedorchestration:Graph-basedorchestrationrepresentsagentsandtheir
interactionsasanetworkofnodes(agents)andedges(communicationpathways),
enablingdynamicandnon-linearworkflows.Forexample,AWSusesagraph-based
modelinitsagentinteractionframeworktosupportcomplexcoordinationpatternsandenhancescalabilityacrossdistributedsystems.
Supervisoragent
Decisionagent
Dataagent
Analysisagent
ActionMonitoring
agentagent
Primaryflow
Secondaryflow
●Agentnode
Advantages:
?Supportscomplexworkflowswithnon-linearinteractions
?Allowsfordynamicadaptation
?Enhancesscalability
Challenges:
?Increasedcomplexityincreating,
maintaininganddebuggingthe
interactiongraphasthesystemscales
?Difficultyindynamicallymodifyingthe
graphstructureduringruntimetoadapttochangingenvironments
?Computationaloverheadandpotential
performancebottleneckswhentraversingcomplexgraphswithmanynodes
andedges
12|TheenterpriseguidetoAgenticAI
Communicationprotocols:
Effectiveinteragentcommunicationiscrucialforcoordination.Keyprotocolsinclude:
?Agentcommunicationprotocols,originallyformalizedthroughAgentCommunication
Languages(ACLs)suchasKQMLandFIPA-ACL,providedstructuredsemanticsand
intent-drivenmessagingbetweenagents.Whilethesefoundationalmodelsintroduced
keyconceptsinagentinteraction,modernmulti-agentsystems,especiallythosebuiltonLLMs,relyonmorescalableandlightweightmethodssuchasRESTfulAPIs,eventbuses,WebSockets,andmessagequeues(e.g.Kafka,RabbitMQ)toenableasynchronous,tool-integratedanddynamicagentcommunication
?Publish/subscribeparadigmthatdecouplespublishers(agentsthatgeneratemessages)
fromsubscribers(agentsthatreceivemessages),supportingasynchronouscommunication
Visualizationandmonitoring:
Effectiveorchestrationrequiresvisibilityintoagentactivitiesandsystemperformance.Modernagentorchestrationplatformsoffer:
Processvisualization:Real-timeviewsofagentworkflowsandactivities
Performancedashboards:Metricsonagenteffectiveness,efficiencyandoutcomes
Exceptionqueues:Interfacesforaddressingcasesrequiringhumanintervention
Audittrails:Comprehensiverecordsofagentactionsanddecisions
Thesecapabilitiesenableorganizationstomonitor,troubleshootandcontinuouslyimprovetheiragenticsystems.
DeterminingappropriateautonomylevelsforAIagents
Notalltasksaresuitableforfullyautonomousagenticautomation.Determiningtheappropriatelevelofautonomyandhumanoversightiscrucialforbalancingefficiencywithreliability,
handlingexceptionsandmaintainingcompliance.HerearekeyguidelinesfordeterminingthelevelofautomationusingagenticAI:
Dataqualityandintegrity:Humanoversightisessentialforensuringtheaccuracyand
completenessofdatainputs.Regularauditsanddataqualitychecksshouldbeperformedbyhumanexpertstomaintaindataintegritythroughoutautomatedprocesses.
Exceptionhandling:Humansshouldbeinvolvedinmanagingcasesthatfalloutsidethe
parametersofautomatedsystems.Organizationsmustestablishclearescalationpathsforcomplexorunusualcasesthatrequirehumanjudgmentandintervention.
Regulatorycompliance:Humanexpertsmustensurethatautomatedprocessescomplywith
industryregulationsandstandards.Regularcomplianceauditsandupdatesto\automated
systemsshouldbeoverseenbyhumanspecialiststopreventviolationsandmaintainadherencetoevolvingrequirements.
Systemmonitoring:Organizationsshouldimplementcontinuousmonitoringsystemsfor
automatedprocesses.Humanexpertsshouldreviewsystemperformancemetricsandaddressanyanomaliesorissuespromptlytopreventcascadingfailures.
13|TheenterpriseguidetoAgenticAI
Decisionvalidation:Forcriticaldecisions,organizationsshouldimplementahuman-in-the-
loopapproachwhereAIrecommendationsarevalidatedbyhumanexpertsbeforeexecutiontoensureappropriateoutcomes.
Environmentpredictability:ThetaskenvironmentmustbereasonablypredictableforAI
agentstofunctioneffectivelywithoutconstanthumanintervention.Taskswithhighvariabilityoruncertaintymayrequiregreaterhumanoversight.
Riskevaluationandconsequenceseverity:Organizationsshouldimplementahuman-in-the-loopapproachfortaskswhereerrorscouldhavemoderateimpacts.Stronghumanoversightshouldbemaintainedfortaskswhereerrorscouldleadtosignificantfinancial,legalor
reputationaldamage.
Audittrails:Organizationsshouldensurethatautomatedsystemscanprovide
comprehensiveaudittrailsandclearexplanationsfordecisionsmadetosupportregulatorycomplianceandprocesstransparency.
Dataavailabilityandquality:Organizationsneedtoassesstheavailabilityandqualityofdatarequiredforagenttrainingandautomation.
Higherlevelsofautonomyaresuitablewhenhigh-quality,comprehensivedataisavailabletotrainandoperateAIsystemseffectively.
Humanvalue-add:Organizationsshouldconsiderwhetherhumanjudgmentaddssignificantvaluetothetask.Tasksrequiringcreativity,empathy,ethicaljudgmentorcomplexcontextualunderstandingmayrequiremoresubstantialhumaninvolvement.
Thisassessmentframeworkhelpsprioritizetasksforappropriatelevelsofhuman
involvement.Forexample,routinedatareconciliationscoreshighondefinability
andpredictabilitywithlowconsequenceseverity,makingitidealforfullautonomyofagenticautomation.Incontrast,complexfraudinvestigationsmightrequire
significanthumancollaborationgiventheirunpredictabilityandhighconsequenceseverity.
Implementationroadmapacrosstheautonomyspectrum
AgenticAIimplementationexistsonaspectrumfromhuman-ledtofullyautonomous:
Copilot(human-led):
Agentsprovidesuggestionsandsupport,buthumansmakedecisionsandtakeactions
Collaboration(sharedcontrol):
Agentshandleroutinetasksautonomouslybutescalatecomplexcasestohumans
Supervision(agent-led):
Agentsoperateautonomouslywithhumanoversightandinterventioncapabilities
Autonomy(agent-driven):
Agentsoperateindependentlywithminimalhumaninvolvement
Forcomplexusecases,organizationsshouldprogressdeliberatelyalongthisspectrum,buildingtrustandcapabilitiesateachstage:
Phase1:Foundationbuilding
?Identifyhigh-valueusecases
?Conducttasksuitabilityassessments
?Developinitialagentprototypes
?Establishgovernanceframeworks
?Implementchangemanagementprograms
Phase2:Copilotdeployment
?Deployinitialagentsincopilotmode
?Establishfeedbackmechanisms
?Collectperformancedata
?Refineagentcapabilities
?Builduserconfidence
Phase3:Collaborativeautonomy
?Transitionsuitabletaskstocollaborativemode
?Implementinteragentcommunication
?Developorchestrationcapabilities
?Refineexceptionhandling
?Enhancemonitoringandanalytics
Phase4:Supervisedautonomy
?Expandagentautonomywithhumansupervision
?Implementadvancedorchestrationpatterns
?Developpredictivecapabilities
?Enhanceself-healingmechanisms
?Optimizesystemperformance
Phase5:Intelligententerprise
?Deployfullyautonomousagentswhereappropriate
?Implementadvancedlearningandadaptation
?Developcross-domaincapabilities
?Optimizehuman-agentcollaboration
?Continuouslyevolvethesystem
14|TheenterpriseguidetoAgenticAI
15|TheenterpriseguidetoAgenticAI
Real-worldcasestudies:Industryimplementation
casestudies
HavingestablishedtheconceptualfoundationsofagenticAI—fromitsdistinctive
capabilitiesbeyondtraditionalautomationtoframeworksfordecomposingroles,
determiningappropriateautonomylevelsandorchestratingmultipleagents—
wenowturntopracticalimplementation.Thefollowingindustry-specificcasestudies
demonstratehowthesetheoreticalprinciplestranslateintotangiblebusinessoutcomes.
EachusecaseillustratesthecompletejourneyofagenticAIimplementation:fromproblemidentificationandtaskdecompositiontoagentorchestrationstrategies
andmeasurableresults.Theseexamplesprovidenotjustconceptualvalidationbutactionableblueprintsthator
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2026人教版生物八上 【第六單元 第二章 生物的遺傳與變異】 期末專項(xiàng)訓(xùn)練(含答案)
- 保健員上崗證試題及答案
- 婦科手術(shù)圍手術(shù)期出血防治策略
- 大數(shù)據(jù)驅(qū)動(dòng)的職業(yè)性放射病風(fēng)險(xiǎn)預(yù)測(cè)研究
- 大數(shù)據(jù)在精準(zhǔn)醫(yī)療中的應(yīng)用價(jià)值
- 小數(shù)考試題及答案
- 多聯(lián)疫苗在突發(fā)疫情中的應(yīng)急接種策略
- 多組學(xué)標(biāo)志物指導(dǎo)免疫治療個(gè)體化用藥策略
- 2025年高職城市軌道交通通信信號(hào)技術(shù)(城軌信號(hào)基礎(chǔ))試題及答案
- 2025年高職第二學(xué)年(房地產(chǎn)開(kāi)發(fā)與管理)項(xiàng)目管理專項(xiàng)測(cè)試試題及答案
- 2025年國(guó)資委主任年終述職報(bào)告
- 工程顧問(wèn)協(xié)議書
- 2026年沃爾瑪財(cái)務(wù)分析師崗位面試題庫(kù)含答案
- 大學(xué)教學(xué)督導(dǎo)與課堂質(zhì)量監(jiān)控工作心得體會(huì)(3篇)
- 廣東省汕頭市金平區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末化學(xué)試卷(含答案)
- 項(xiàng)目專家評(píng)審意見(jiàn)書標(biāo)準(zhǔn)模板
- SB/T 11137-2015代駕經(jīng)營(yíng)服務(wù)規(guī)范
- 癌癥腫瘤患者中文版癌癥自我管理效能感量表
- GB/T 16672-1996焊縫工作位置傾角和轉(zhuǎn)角的定義
- 6.項(xiàng)目成員工作負(fù)荷統(tǒng)計(jì)表
- 砂漿拉伸粘結(jié)強(qiáng)度強(qiáng)度試驗(yàn)記錄和報(bào)告
評(píng)論
0/150
提交評(píng)論