2026屆北京市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2026屆北京市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2026屆北京市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2026屆北京市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2026屆北京市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆北京市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集,則集合的子集個數(shù)為()A. B. C. D.2.如圖,在平行四邊形中,對角線與交于點(diǎn),且,則()A. B.C. D.3.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,4.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.5.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.6.向量,,且,則()A. B. C. D.7.某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種8.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.9.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.10.近年來,隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計(jì)如圖所示,現(xiàn)有如下說法:①可以估計(jì)使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計(jì)不足的大學(xué)生使用主要玩游戲;③可以估計(jì)使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.11.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.12.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的前項(xiàng)和為,,且,則__________.14.函數(shù)在內(nèi)有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是________.15.已知,則__________.16.已知集合,,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點(diǎn).(1)求證:;(2)求二面角的大小.18.(12分)已知函數(shù).(1)當(dāng)時,解不等式;(2)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.20.(12分)新高考,取消文理科,實(shí)行“”,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計(jì)中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?了解新高考不了解新高考總計(jì)中青年中老年總計(jì)附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調(diào)查者中隨機(jī)選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.21.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實(shí)數(shù)的取值范圍.22.(10分)某生物硏究小組準(zhǔn)備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據(jù)統(tǒng)計(jì)該地區(qū)蜻蜓有兩種,且這兩種的個體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機(jī)變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機(jī)捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長為隨機(jī)變量,若用正態(tài)分布來近似描述的分布,請你根據(jù)(Ⅰ)中的結(jié)果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機(jī)捕捉3只,記這3只中翼長在區(qū)間的個數(shù)為,求的分布列及數(shù)學(xué)期望(分布列寫出計(jì)算表達(dá)式即可).注:若,則,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點(diǎn)睛】此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題2、C【解析】

畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.3、A【解析】

設(shè),取與重合時的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時,,,排除B、D選項(xiàng);因?yàn)?,,此時,,當(dāng)平面平面時,,,排除C選項(xiàng).故選:A.【點(diǎn)睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.4、C【解析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時,所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.5、B【解析】

取的中點(diǎn),連接、,推導(dǎo)出,設(shè)設(shè)球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計(jì)算出球的半徑,再利用球體的表面積公式可得出結(jié)果.【詳解】取的中點(diǎn),連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設(shè)球心為,和的中心分別為、.由球的性質(zhì)可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,解題時要分析幾何體的結(jié)構(gòu),找出球心的位置,并以此計(jì)算出球的半徑長,考查推理能力與計(jì)算能力,屬于中等題.6、D【解析】

根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.7、B【解析】

分三種情況,任務(wù)A排在第一位時,E排在第二位;任務(wù)A排在第二位時,E排在第三位;任務(wù)A排在第三位時,E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項(xiàng)不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務(wù)A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時,E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點(diǎn)睛】本題考查了排列組合問題,考查了學(xué)生的邏輯推理能力,屬于中檔題.8、B【解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.9、D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.10、C【解析】

根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計(jì)算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計(jì)算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因?yàn)椋寓壅_.故選:C.【點(diǎn)睛】本題考查統(tǒng)計(jì)中相關(guān)命題真假的判斷,計(jì)算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.11、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.12、B【解析】

由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對應(yīng)正弦曲線中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意知,繼而利用等比數(shù)列的前項(xiàng)和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和求和公式,屬于中檔題.14、【解析】

設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價于函數(shù),即有兩個解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時,易知不成立;當(dāng)時,根據(jù)對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對稱性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫出圖像是解題的關(guān)鍵.15、【解析】解:由題意可知:.16、【解析】

由于,,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計(jì)算可得其正切值為,故二面角的大小為;法二:以D為原點(diǎn)建立空間直角坐標(biāo)系,計(jì)算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計(jì)算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).設(shè)平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量為.設(shè)二面角的大小為,由圖知,,所以即二面角的大小為.18、(1);(2).【解析】

(1)分類討論去絕對值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對值,轉(zhuǎn)化為在時恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當(dāng)時,,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因?yàn)?,,所以,又,,,?不等式恒成立,即在時恒成立,不等式恒成立必須,,解得.所以,解得,結(jié)合,所以,即的取值范圍為.【點(diǎn)睛】本題考查分類討論解絕對值不等式,含有絕對值的不等式的恒成立問題.屬于中檔題.19、(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數(shù)值關(guān)系得到,進(jìn)而求得數(shù)值;(2)由三角形的三個角的關(guān)系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面積.20、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián);(3)分布列見解析,.【解析】

(1)分別求出中青年、中老年對高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測值,對照表格,即可得出結(jié)論;(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機(jī)變量分布列,根據(jù)期望公式即可求解.【詳解】(1)由題中數(shù)據(jù)可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯(lián)表如圖所示了解新高考不了解新高考總計(jì)中青年22830老年81220總計(jì)302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián).(3)年齡在的被調(diào)查者共5人,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論