版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆廣東省惠東縣惠東中學高一上數(shù)學期末考試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓的圓心和半徑為()A.(1,1)和11 B.(-1,-1)和11C.(-1,-1)和 D.(1,1)和2.函數(shù)零點所在區(qū)間為A. B.C. D.3.設函數(shù)f(x)=x-lnx,則函數(shù)y=f(x)()A.在區(qū)間,(1,e)內(nèi)均有零點B.在區(qū)間,(1,e)內(nèi)均無零點C.在區(qū)間內(nèi)有零點,在區(qū)間(1,e)內(nèi)無零點D.區(qū)間內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點4.函數(shù)的圖像恒過定點,則的坐標是()A. B.C. D.5.計算器是如何計算,,,,等函數(shù)值的?計算器使用的是數(shù)值計算法,其中一種方法是用容易計算的多項式近似地表示這些函數(shù),通過計算多項式的值求出原函數(shù)的值,如,,,其中.英國數(shù)學家泰勒(B.Taylor,1685-1731)發(fā)現(xiàn)了這些公式,可以看出,右邊的項用得越多,計算得出的和的值也就越精確.運用上述思想,可得到的近似值為()A.0.50 B.0.52C.0.54 D.0.566.設,,則a,b,c的大小關系是()A. B.C. D.7.已知,,則()A. B.C.或 D.8.若在上單調(diào)遞減,則的取值范圍是().A. B.C. D.9.已知直線、、與平面、,下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則10.已知A(3,1),B(-1,2),若∠ACB的平分線方程為y=x+1,則AC所在的直線方程為()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=0二、填空題:本大題共6小題,每小題5分,共30分。11.設奇函數(shù)對任意的,,有,且,則的解集___________.12.已知且,則=______________13.設函數(shù)則的值為________14.函數(shù)的定義域為_________________________15.若是第三象限的角,則是第________象限角;16.已知,則的最大值為_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某運營商為滿足用戶手機上網(wǎng)的需求,推出甲、乙兩種流量包月套餐,兩種套餐應付的費用(單位:元)和使用的上網(wǎng)流量(單位:GB)之間的關系如圖所示,其中AB,DE都與橫軸平行,BC與EF相互平行(1)分別求套餐甲、乙的費用(元)與上網(wǎng)流量x(GB)的函數(shù)關系式f(x)和g(x);(2)根據(jù)題中信息,用戶怎樣選擇流量包月套餐,能使自己應付的費用更少?18.如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.(1)求證:DE平面ABC;(2)求證:B1C⊥平面BDE.19.設是兩個不共線的非零向量.(1)若求證:A,B,D三點共線;(2)試求實數(shù)k的值,使向量和共線.20.已知集合,集合當時,求及;若,求實數(shù)m的取值范圍21.已知定義域為函數(shù)是奇函數(shù).(1)求的值;(2)判斷的單調(diào)性,并證明;(3)若,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)圓的標準方程寫出圓心和半徑即可.【詳解】因,所以圓心坐標為,半徑為,故選:D2、C【解析】利用零點存在性定理計算,由此求得函數(shù)零點所在區(qū)間.【詳解】依題意可知在上為增函數(shù),且,,,所以函數(shù)零點在區(qū)間.故選C.【點睛】本小題主要考查零點存在性定理的運用,屬于基礎題.3、D【解析】求出導函數(shù),由導函數(shù)的正負確定函數(shù)的單調(diào)性,再由零點存在定理得零點所在區(qū)間【詳解】當x∈時,函數(shù)圖象連續(xù)不斷,且f′(x)=-=<0,所以函數(shù)f(x)在上單調(diào)遞減又=+1>0,f(1)=>0,f(e)=e-1<0,所以函數(shù)f(x)有唯一的零點在區(qū)間(1,e)內(nèi)故選:D4、D【解析】利用指數(shù)函數(shù)的性質(zhì)即可得出結果.【詳解】由指數(shù)函數(shù)恒過定點,所以函數(shù)的圖像恒過定點.故選:D5、C【解析】根據(jù)新定義,直接計算取近似值即可.【詳解】由題意,故選:C6、C【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),求得的取值范圍,即可求解.【詳解】由對數(shù)的性質(zhì),可得,又由指數(shù)函數(shù)的性質(zhì),可得,即,且,所以.故選:C.7、A【解析】利用兩邊平方求出,再根據(jù)函數(shù)值的符號得到,由可求得結果.【詳解】,,,,,,所以,,.故選:A..8、B【解析】令f(x)=,由題意得f(x)在上單調(diào)遞增,且f(﹣1),由此能求出a的取值范圍【詳解】∵函數(shù)在上單調(diào)遞減,令f(x)=,∴f(x)=在上單調(diào)遞增,且f(﹣1)∴,解得a≤8故選B.【點睛】本題考查實數(shù)值的求法,注意函數(shù)的單調(diào)性的合理運用,屬于基礎題.9、D【解析】利用線線,線面,面面的位置關系,以及垂直,平行的判斷和性質(zhì)判斷選項.【詳解】A.若,則或異面,故A不正確;B.缺少垂直于交線這個條件,不能推出,故B不正確;C.由垂直關系可知,或相交,或是異面,故C不正確;D.因為,所以平面內(nèi)存在直線,若,則,且,所以,故D正確.故選:D10、C【解析】設點A(3,1)關于直線的對稱點為,則,解得,即,所以直線的方程為,聯(lián)立解得,即,又,所以邊AC所在的直線方程為,選C.點睛:本題主要考查了直線方程的求法,屬于中檔題.解題時要結合實際情況,準確地進行求解二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】可根據(jù)函數(shù)的單調(diào)性和奇偶性,結合和,分析出的正負情況,求解.【詳解】對任意,,有故在上為減函數(shù),由奇函數(shù)的對稱性可知在上為減函數(shù),則則,,,;,;,;,.故解集為:故答案為:【點睛】正確理解奇函數(shù)和偶函數(shù)的定義,必須把握好兩個問題:(1)定義域關于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要非充分條件;(2)f(-x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.奇函數(shù)的圖象關于原點對稱,偶函數(shù)的圖象關于y軸對稱,反之也成立.利用這一性質(zhì)可簡化一些函數(shù)圖象的畫法,也可以利用它去判斷函數(shù)的奇偶性12、3【解析】先換元求得函數(shù),然后然后代入即可求解.【詳解】且,令,則,即,解得,故答案為:3.13、【解析】直接利用分段函數(shù)解析式,先求出的值,從而可得的值.【詳解】因為函數(shù),所以,則,故答案為.【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)解不等式,屬于中檔題.對于分段函數(shù)解析式的考查是命題的動向之一,這類問題的特點是綜合性強,對抽象思維能力要求高,因此解決這類題一定要層次清楚,思路清晰.14、(-1,2).【解析】分析:由對數(shù)式真數(shù)大于0,分母中根式內(nèi)部的代數(shù)式大于0聯(lián)立不等式組求解x的取值集合得答案詳解:由,解得﹣1<x<2∴函數(shù)f(x)=+ln(x+1)的定義域為(﹣1,2)故答案為(﹣1,2)點睛:常見基本初等函數(shù)定義域的基本要求(1)分式函數(shù)中分母不等于零(2)偶次根式函數(shù)的被開方式大于或等于0.(3)一次函數(shù)、二次函數(shù)的定義域均為R.(4)y=x0定義域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定義域均為R.(6)y=logax(a>0且a≠1)的定義域為(0,+∞)15、一或三【解析】根據(jù)的范圍求得的范圍,從而確定正確答案.【詳解】依題意,,,所以當為奇數(shù)時,在第三象限;當為偶數(shù)時,在第一象限.故答案:一或三16、【解析】消元,轉(zhuǎn)化為求二次函數(shù)在閉區(qū)間上的最值【詳解】,,時,取到最大值,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)f(x)=30,?(2)答案見解析【解析】(1)利用函數(shù)的圖像結合分段函數(shù)的性質(zhì)求出解析式;(2)由f(x)=g(x),得x=30,結合圖像選擇合適的套餐.【小問1詳解】對于套餐甲:當0≤x≤20時,f(x)=30,當x>20時,設f(x)=kx+b,可知函數(shù)圖象經(jīng)過點(20,30),所以20k+b=3050k+b=120,解得k=3b=-30故f(x)=對于套餐乙:當0≤x≤50時,g(x)=60,當x>50時,根據(jù)題意,可設g(x)=3x+d,將(50,60)代入可得d=-90故g(x)=【小問2詳解】由f(x)=g(x),可得3x-30=60,解得x=30由函數(shù)圖象可知:若用戶使用的流量x∈[0,30若用戶使用的流量x=30時,選擇兩種套餐均可;若用戶使用的流量x∈(30,+∞18、(1)證明過程見解析;(2)證明過程見解析.【解析】(1)根據(jù)面面平行的判定定理,結合線面平行的判定定理、面面平行的性質(zhì)進行證明即可;(2)根據(jù)正三棱柱的幾何性質(zhì),結合面面垂直的性質(zhì)定理、線面垂直的判定定理、面面平行的性質(zhì)定理進行證明即可.【小問1詳解】設G是CC1的中點,連接,因為E為B1C的中點,所以,而,所以,因為平面ABC,平面ABC,所以平面ABC,同理可證平面ABC,因為平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小問2詳解】設是的中點,連接,因為E為B1C的中點,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因為ABC是正三角形,是的中點,所以,因此平面,而平面,因此,而,所以,因為正三棱柱ABC-A1B1C1中棱長都相等,所以,而E分別為B1C的中點,所以,而平面BDE,,所以B1C⊥平面BDE.19、(1)證明見解析;(2).【解析】(1)利用向量共線定理證明向量與共線即可;(2)利用向量共線定理即可求出【詳解】(1)∵,∴//,又有公共點B∴A、B、D三點共線(2)設,化為,∴,解得k=±120、(1),或;(2)或.【解析】(1)當時,Q=,由集合的交、并、補運算,即可求解;(2)由集合的包含關系,得Q?P,討論①Q(mào)=?,②Q≠?,運算可得解【詳解】(1)當時,Q=,所以,或.(2)因為P∩Q=Q,所以Q?P,①當m-1>3m-2,即時,Q=?,滿足題意,②當m-1≤3m-2,即時,,解得,綜合①②可得:實數(shù)m的取值范圍或.【點睛】本題主要考查了集合的交、并、補運算及集合的包含關系的應用,其中解答中熟記集合的運算的基本方法,以及合理利用集合的包含關系,分類討論求解是解答的關鍵,著重考查了分類討論思想,以及運算與求解能力,屬于基礎題.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車熱處理生產(chǎn)線操作工崗前常識考核試卷含答案
- 我國上市公司治理結構與現(xiàn)金持有量的關聯(lián)性探究:理論、實證與案例分析
- 印刷設備裝配調(diào)試工風險評估與管理強化考核試卷含答案
- 遺體接運工安全理論評優(yōu)考核試卷含答案
- 卡軌車司機操作管理考核試卷含答案
- 揚聲器裝調(diào)工班組安全競賽考核試卷含答案
- 稀土拋光粉工安全風險測試考核試卷含答案
- 飛機操縱系統(tǒng)安裝調(diào)試工崗前復試考核試卷含答案
- 絹人工安全生產(chǎn)能力水平考核試卷含答案
- 河北省石家莊市2025-2026學年高一上學期1月份質(zhì)量檢測語文試題附答案
- 編鐘樂器市場洞察報告
- 負壓沖洗式口腔護理
- 山東省泰安市2024-2025學年高一物理下學期期末考試試題含解析
- 凈化車間液氮洗操作規(guī)程
- 《中電聯(lián)標準-抽水蓄能電站鋼筋混凝土襯砌水道設計導則》
- 【可行性報告】2023年硫精砂項目可行性研究分析報告
- 道路綠化養(yǎng)護投標方案(技術方案)
- 2023年內(nèi)蒙古呼倫貝爾市海拉爾區(qū)公開招聘公辦幼兒園控制數(shù)人員80名高頻筆試、歷年難易點考題(共500題含答案解析)模擬試卷
- 中外建筑史課件
- 三年級小學英語閱讀理解
- 一年級數(shù)學質(zhì)量分析強桂英
評論
0/150
提交評論