版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024年人教版七7年級下冊數(shù)學(xué)期末解答題考試試卷含答案一、解答題1.(1)小麗計劃在母親節(jié)那天送份禮物媽媽,特設(shè)計一個表面積為12dm2的正方體紙盒,則這個正方體的棱長是.(2)為了增加小區(qū)的綠化面積,幸福公園準(zhǔn)備修建一個面積121πm2的草坪,草坪周圍用籬笆圍繞.現(xiàn)從對稱美的角度考慮有甲,乙兩種方案,甲方案:建成正方形;乙方案:建成圓形的.如果從節(jié)省籬笆費用的角度考慮,你會選擇哪種方案?請說明理由;(3)在(2)的方案中,審批時發(fā)現(xiàn)修如此大的草坪,目的是親近自然,若按上方案就沒達(dá)到目的,因此建議用如圖的設(shè)計方案:正方形里修三條小路,三條小路的寬度是一樣,這樣草坪的實際面積就減少了21πm2,請你根據(jù)此方案求出各小路的寬度(π取整數(shù)).2.(1)如圖,分別把兩個邊長為的小正方形沿一條對角線裁成個小三角形拼成一個大正方形,則大正方形的邊長為_______;(2)若一個圓的面積與一個正方形的面積都是,設(shè)圓的周長為,正方形的周長為,則_____(填“”或“”或“”號);(3)如圖,若正方形的面積為,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為的長方形紙片,使它的長和寬之比為,他能裁出嗎?請說明理由?3.如圖,用兩個邊長為10的小正方形拼成一個大的正方形.(1)求大正方形的邊長?(2)若沿此大正方形邊的方向出一個長方形,能否使裁出的長方形的長寬之比為3:2,且面積為480cm2?4.如圖,用兩個邊長為15的小正方形拼成一個大的正方形,(1)求大正方形的邊長?(2)若沿此大正方形邊的方向剪出一個長方形,能否使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2?5.如圖,紙上有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形.(1)拼成的正方形的面積與邊長分別是多少?(2)如圖所示,以數(shù)軸的單位長度的線段為邊作一個直角三角形,以數(shù)軸的-1點為圓心,直角三角形的最大邊為半徑畫弧,交數(shù)軸正半軸于點A,那么點A表示的數(shù)是多少?點A表示的數(shù)的相反數(shù)是多少?(3)你能把十個小正方形組成的圖形紙,剪開并拼成正方形嗎?若能,請畫出示意圖,并求它的邊長二、解答題6.如圖,直線HDGE,點A在直線HD上,點C在直線GE上,點B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點P是線段AB上一點,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.7.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點,點為上一點,連接,若的平分線交線段于點,連接,若,過點作交的延長線于點,且,求的度數(shù).8.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)9.如圖1,點在直線、之間,且.(1)求證:;(2)若點是直線上的一點,且,平分交直線于點,若,求的度數(shù);(3)如圖3,點是直線、外一點,且滿足,,與交于點.已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).10.如圖1,MN∥PQ,點C、B分別在直線MN、PQ上,點A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).三、解答題11.(1)光線從空氣中射入水中會產(chǎn)生折射現(xiàn)象,同時光線從水中射入空氣中也會產(chǎn)生折射現(xiàn)象,如圖1,光線a從空氣中射入水中,再從水中射入空氣中,形成光線b,根據(jù)光學(xué)知識有,請判斷光線a與光線b是否平行,并說明理由.(2)光線照射到鏡面會產(chǎn)生反射現(xiàn)象,由光學(xué)知識,入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,如圖2有一口井,已知入射光線與水平線的夾角為,問如何放置平面鏡,可使反射光線b正好垂直照射到井底?(即求與水平線的夾角)(3)如圖3,直線上有兩點A、C,分別引兩條射線、.,,射線、分別繞A點,C點以1度/秒和3度/秒的速度同時順時針轉(zhuǎn)動,設(shè)時間為t,在射線轉(zhuǎn)動一周的時間內(nèi),是否存在某時刻,使得與平行?若存在,求出所有滿足條件的時間t.12.已知:三角形ABC和三角形DEF位于直線MN的兩側(cè)中,直線MN經(jīng)過點C,且,其中,,,點E、F均落在直線MN上.(1)如圖1,當(dāng)點C與點E重合時,求證:;聰明的小麗過點C作,并利用這條輔助線解決了問題.請你根據(jù)小麗的思考,寫出解決這一問題的過程.(2)將三角形DEF沿著NM的方向平移,如圖2,求證:;(3)將三角形DEF沿著NM的方向平移,使得點E移動到點,畫出平移后的三角形DEF,并回答問題,若,則________.(用含的代數(shù)式表示)13.已知:直線∥,A為直線上的一個定點,過點A的直線交于點B,點C在線段BA的延長線上.D,E為直線上的兩個動點,點D在點E的左側(cè),連接AD,AE,滿足∠AED=∠DAE.點M在上,且在點B的左側(cè).(1)如圖1,若∠BAD=25°,∠AED=50°,直接寫出ABM的度數(shù);(2)射線AF為∠CAD的角平分線.①如圖2,當(dāng)點D在點B右側(cè)時,用等式表示∠EAF與∠ABD之間的數(shù)量關(guān)系,并證明;②當(dāng)點D與點B不重合,且∠ABM+∠EAF=150°時,直接寫出∠EAF的度數(shù).14.如圖,AB⊥AK,點A在直線MN上,AB、AK分別與直線EF交于點B、C,∠MAB+∠KCF=90°.(1)求證:EF∥MN;(2)如圖2,∠NAB與∠ECK的角平分線交于點G,求∠G的度數(shù);(3)如圖3,在∠MAB內(nèi)作射線AQ,使∠MAQ=2∠QAB,以點C為端點作射線CP,交直線AQ于點T,當(dāng)∠CTA=60°時,直接寫出∠FCP與∠ACP的關(guān)系式.15.如圖1,,E是、之間的一點.(1)判定,與之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖2,若、的兩條平分線交于點F.直接寫出與之間的數(shù)量關(guān)系;(3)將圖2中的射線沿翻折交于點G得圖3,若的余角等于的補(bǔ)角,求的大?。摹⒔獯痤}16.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個角度數(shù)改為:當(dāng),,則__________.當(dāng),時,則__________.當(dāng),時,則__________.當(dāng),時,則__________.()若和的度數(shù)改為用字母和來表示,你能找到與和之間的關(guān)系嗎?請直接寫出你發(fā)現(xiàn)的結(jié)論.17.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點F在DA的延長線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.18.如圖,在中,與的角平分線交于點.(1)若,則;(2)若,則;(3)若,與的角平分線交于點,的平分線與的平分線交于點,,的平分線與的平分線交于點,則.19.直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動,A、B不與點O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點A、B在運動的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點C落在直線MN上,則∠ABO=________(3)如圖4,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長線交于E、F,則∠EAF=;在△AEF中,如果有一個角是另一個角的倍,求∠ABO的度數(shù).20.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準(zhǔn)互余三角形”,請直接寫出的度數(shù).【參考答案】一、解答題1.(1)dm;(2)從節(jié)省籬笆費用的角度考慮,選擇乙方案建成圓形;(3)根據(jù)此方案求出小路的寬度為【分析】(1)先求得正方體的一個面的面積,然后依據(jù)算術(shù)平方根的定義求解即可;(2)根據(jù)正方形的周解析:(1)dm;(2)從節(jié)省籬笆費用的角度考慮,選擇乙方案建成圓形;(3)根據(jù)此方案求出小路的寬度為【分析】(1)先求得正方體的一個面的面積,然后依據(jù)算術(shù)平方根的定義求解即可;(2)根據(jù)正方形的周長公式以及圓形的周長公式即可求出答案;(3)根據(jù)圖形的平移求解.【詳解】解:(1)∵正方體有6個面且每個面都相等,∴正方體的一個面的面積=2dm2.∴正方形的棱長=dm;故答案為:dm;(2)甲方案:設(shè)正方形的邊長為xm,則x2=121∴x=11∴正方形的周長為:4x=44m乙方案:設(shè)圓的半徑rm為,則r2==121∴r=11∴圓的周長為:2=22m∴442222(2-∵4>∴2∴∴正方形的周長比圓的周長大故從節(jié)省籬笆費用的角度考慮,選擇乙方案建成圓形;(3)依題意可進(jìn)行如圖所示的平移,設(shè)小路的寬度為ym,則(11–y)2=12121∴11–y=10∴y=∵取整數(shù)∴y=答:根據(jù)此方案求出小路的寬度為;【點睛】本題主要考查的是算術(shù)平方根的定義,熟練掌握正方形的性質(zhì)以及平移的性質(zhì)是解題的關(guān)鍵;2.(1);(2);(3)不能裁剪出,詳見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進(jìn)而可求得圓和正方形解析:(1);(2);(3)不能裁剪出,詳見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進(jìn)而可求得圓和正方形的周長,利用作商法比較這兩數(shù)大小即可;(3)利用方程思想求出長方形的長邊,與正方形邊長比較大小即可;【詳解】解:(1)∵小正方形的邊長為1cm,∴小正方形的面積為1cm2,∴兩個小正方形的面積之和為2cm2,即所拼成的大正方形的面積為2cm2,∴大正方形的邊長為cm,(2)∵,∴,∴,設(shè)正方形的邊長為a∵,∴,∴,∴故答案為:<;(3)解:不能裁剪出,理由如下:∵長方形紙片的長和寬之比為,∴設(shè)長方形紙片的長為,寬為,則,整理得:,∴,∵450>400,∴,∴,∴長方形紙片的長大于正方形的邊長,∴不能裁出這樣的長方形紙片.【點睛】本題通過圓和正方形的面積考查了對算術(shù)平方根的應(yīng)用,主要是對學(xué)生無理數(shù)運算及比較大小進(jìn)行了考查.3.(1)大正方形的邊長是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】(1)大正方形的邊長是(2)設(shè)長方形紙解析:(1)大正方形的邊長是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】(1)大正方形的邊長是(2)設(shè)長方形紙片的長為3xcm,寬為2xcm,則3x?2x=480,解得:x=因為,所以沿此大正方形邊的方向剪出一個長方形,不能使剪出的長方形紙片的長寬之比為2:3,且面積為480cm2.【點睛】本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.4.(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正方形的邊長是:=30;(2)設(shè)長方形紙片的長為4xcm,寬為3xcm,則4x?3x=720,解得:x=,4x==>30,所以沿此大正方形邊的方向剪出一個長方形,不能使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2.故答案為(1)30;(2)不能.【點睛】本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.5.(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正解析:(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正方形,那么組成的大正方形的面積為10,邊長為10的算術(shù)平方根,畫圖.【詳解】試題分析:解:(1)拼成的正方形的面積與原面積相等1×1×5=5,邊長為,如圖(1)(2)斜邊長=,故點A表示的數(shù)為:;點A表示的相反數(shù)為:(3)能,如圖拼成的正方形的面積與原面積相等1×1×10=10,邊長為.考點:1.作圖—應(yīng)用與設(shè)計作圖;2.圖形的剪拼.二、解答題6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點.7.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點E作,延長DC至Q,過點M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點E作,延長DC至Q,過點M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過點E作,延長DC至Q,過點M作,,,AF平分FH平分設(shè),.【點睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.8.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點在于過拐點作平行線.9.(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結(jié)合已知條件,得出即可證明;(2)過點E作HE∥CD,設(shè)由(1)得AB∥CD解析:(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結(jié)合已知條件,得出即可證明;(2)過點E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點N作NP∥CD,過點M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因為,代入的式子即可求出.【詳解】(1)過點E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點N作NP∥CD,過點M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯角相等,同位角相等來計算和推導(dǎo)角之間的關(guān)系.10.(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)解析:(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補(bǔ)得到∴、∠CAB+∠ACD=180°,由鄰補(bǔ)角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點A作AD∥MN,∵M(jìn)N∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準(zhǔn)確的推導(dǎo)是解決本題的關(guān)鍵.三、解答題11.(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反解析:(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反射光線與鏡面的夾角相等可得∠1=∠2,然后根據(jù)平角等于180°求出∠1的度數(shù),再加上40°即可得解;(3)分①AB與CD在EF的兩側(cè),分別表示出∠ACD與∠BAC,然后根據(jù)兩直線平行,內(nèi)錯角相等列式計算即可得解;②CD旋轉(zhuǎn)到與AB都在EF的右側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計算即可得解;③CD旋轉(zhuǎn)到與AB都在EF的左側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計算即可得解.【詳解】解:(1)平行.理由如下:如圖1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(內(nèi)錯角相等,兩直線平行);(2)如圖2:∵入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,∴∠1=∠2,∵入射光線a與水平線OC的夾角為40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN與水平線的夾角為:25°+40°=65°,即MN與水平線的夾角為65°,可使反射光線b正好垂直照射到井底;(3)存在.如圖①,AB與CD在EF的兩側(cè)時,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠ACD=∠BAC,即115-3t=105-t,解得t=5;如圖②,CD旋轉(zhuǎn)到與AB都在EF的右側(cè)時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠DCF=∠BAC,即295-3t=105-t,解得t=95;如圖③,CD旋轉(zhuǎn)到與AB都在EF的左側(cè)時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,則∠DCF=∠BAC,即3t-295=t-105,解得t=95,此時t>105,∴此情況不存在.綜上所述,t為5秒或95秒時,CD與AB平行.【點睛】本題考查了平行線的判定與性質(zhì),光學(xué)原理,讀懂題意并熟練掌握平行線的判定方法與性質(zhì)是解題的關(guān)鍵,(3)要注意分情況討論.12.(1)見解析;(2)見解析;(3)見解析;.【分析】(1)過點C作,得到,再根據(jù),,得到,進(jìn)而得到,最后證明;(2)先證明,再證明,得到,問題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠D解析:(1)見解析;(2)見解析;(3)見解析;.【分析】(1)過點C作,得到,再根據(jù),,得到,進(jìn)而得到,最后證明;(2)先證明,再證明,得到,問題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠DEF=∠ECA=,進(jìn)而得到,根據(jù)三角形內(nèi)角和即可求解.【詳解】解:(1)過點C作,,,,,,,,,;(2)解:,,又,,,,,,;(3)如圖三角形DEF即為所求作三角形.∵,∴,由(2)得,DE∥AC,∴∠DEF=∠ECA=,∵,∴∠ACB=,∴,∴∠A=180°-=.故答案為為:.【點睛】本題考查了平行線的判定,三角形的內(nèi)角和等知識,綜合性較強(qiáng),熟練掌握相關(guān)知識,根據(jù)題意畫出圖形是解題關(guān)鍵.13.(1);(2)①,見解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對比即可;②分類討論點在的左右兩側(cè)的情況,解析:(1);(2)①,見解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對比即可;②分類討論點在的左右兩側(cè)的情況,運用角的等量代換換算即可.【詳解】.解:(1)設(shè)在上有一點N在點A的右側(cè),如圖所示:∵∴,∴∴(2)①.證明:設(shè),.∴.∵為的角平分線,∴.∵,∴.∴.∴.②當(dāng)點在點右側(cè)時,如圖:由①得:又∵∴∵∴當(dāng)點在點左側(cè),在右側(cè)時,如圖:∵為的角平分線∴∵∴,∵∴∴∵∴又∵∴∴當(dāng)點和在點左側(cè)時,設(shè)在上有一點在點的右側(cè)如圖:此時仍有,∴∴綜合所述:或【點睛】本題主要考查了平行線的性質(zhì),角平分線的定義,角的等量代換等,靈活運用平行線的性質(zhì)和角平分線定義等量代換出角的關(guān)系是解題的關(guān)鍵.14.(1)見解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定義可得∠MAB+∠KCN=90°,然后根據(jù)同角的余角相等可得∠KAN=∠K解析:(1)見解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定義可得∠MAB+∠KCN=90°,然后根據(jù)同角的余角相等可得∠KAN=∠KCF,從而判斷兩直線平行;(2)設(shè)∠KAN=∠KCF=α,過點G作GH∥EF,結(jié)合角平分線的定義和平行線的判定及性質(zhì)求解;(3)分CP交射線AQ及射線AQ的反向延長線兩種情況結(jié)合角的和差關(guān)系分類討論求解.【詳解】解:(1)∵AB⊥AK∴∠BAC=90°∴∠MAB+∠KAN=90°∵∠MAB+∠KCF=90°∴∠KAN=∠KCF∴EF∥MN(2)設(shè)∠KAN=∠KCF=α則∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG平分∠NAB,CG平分∠ECK∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α∴∠FCG=∠KCG+∠KCF=90°+α過點G作GH∥EF∴∠HGC=∠FCG=90°+α又∵M(jìn)N∥EF∴MN∥GH∴∠HGA=∠GAN=45°+α∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45°(3)①當(dāng)CP交射線AQ于點T∵∴又∵∴由(1)可得:EF∥MN∴∵∴∵,∴∴即∠FCP+2∠ACP=180°②當(dāng)CP交射線AQ的反向延長線于點T,延長BA交CP于點G,由EF∥MN得∴又∵,,∴∵,∴∴∴由①可得∴∴綜上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【點睛】本題考查平行線的判定和性質(zhì)以及角的和差關(guān)系,準(zhǔn)確理解題意,正確推理計算是解題關(guān)鍵.15.(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結(jié)論得∠AFD=∠BAF+∠CDF,根據(jù)角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結(jié)論得到∠AFD=∠AED;(3)由(1)的結(jié)論得∠AGD=∠BAF+∠CDG,利用折疊性質(zhì)得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計算出∠BAE的度數(shù).【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結(jié)論得,、的兩條平分線交于點F,,,,,;(3)由(1)的結(jié)論得,而射線沿翻折交于點G,,,,,.【點睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.四、解答題16.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時,;當(dāng)時,.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時,;當(dāng)時,.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時,∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時,∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時,∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時,∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時,即時,∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時,即時,∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時,;當(dāng)時,.【點睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.17.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.18.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線,用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點O是∠AB故答案為:110°;C與∠ACB的角平分線的交點,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線與∠ACO的平分線交于點O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點睛】本題考查了三角形內(nèi)角和定理,角平分線定義的應(yīng)用,注意:三角形的內(nèi)角和等于180°.19.(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠解析:(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;(2)由于將△ABC沿直線AB折疊,若點C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結(jié)論;根據(jù)將△ABC沿直線AB折疊,若點C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可得出∠E與∠ABO的關(guān)系,由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 慢性腎小球腎炎總結(jié)2026
- 《GBT 22410-2008包裝 危險貨物運輸包裝 塑料相容性試驗》專題研究報告深度
- 《GBT 4127.5-2008固結(jié)磨具 尺寸 第5部分:平面磨削用端面磨砂輪》專題研究報告
- 《GBT 22352-2008土方機(jī)械 吊管機(jī) 術(shù)語和商業(yè)規(guī)格》專題研究報告
- 《FZT 52006-2023竹漿粘膠短纖維》專題研究報告
- 急性呼吸窘迫綜合征患者個體化機(jī)械通氣策略總結(jié)2026
- 道路安全教育培訓(xùn)照片課件
- 道路安全培訓(xùn)講解課件
- 道路交通安全課課件
- 2026年河北省衡水市高職單招英語試題及答案
- 云南師大附中2026屆高三高考適應(yīng)性月考卷(六)思想政治試卷(含答案及解析)
- 建筑安全風(fēng)險辨識與防范措施
- CNG天然氣加氣站反恐應(yīng)急處置預(yù)案
- 培訓(xùn)教師合同范本
- 2026年黑龍江單招職業(yè)技能案例分析專項含答案健康養(yǎng)老智慧服務(wù)
- 2025年5年級期末復(fù)習(xí)-25秋《王朝霞期末活頁卷》語文5上A3
- (2025)70周歲以上老年人換長久駕照三力測試題庫(附答案)
- 醫(yī)院外科主任職責(zé)說明書
- 零售行業(yè)采購經(jīng)理商品采購與庫存管理績效考核表
- 理解當(dāng)代中國 大學(xué)英語綜合教程1(拓展版)課件 B1U3 Into the green
評論
0/150
提交評論