版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆湖南省茶陵三中高三數(shù)學第一學期期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.體育教師指導4個學生訓練轉(zhuǎn)身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉(zhuǎn)”,若4個學生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.62.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.3.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.4.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)5.若集合,則=()A. B. C. D.6.已知全集,則集合的子集個數(shù)為()A. B. C. D.7.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.8.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內(nèi)一點,則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.59.如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.10.寧波古圣王陽明的《傳習錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.11.把函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實數(shù)的最小值是()A. B. C. D.12.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值是______.14.已知,且,則__________.15.已知△的三個內(nèi)角為,,,且,,成等差數(shù)列,則的最小值為__________,最大值為___________.16.已知,滿足約束條件,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+18.(12分)如圖,底面是等腰梯形,,點為的中點,以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.19.(12分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點為重心,與相交于點.(1)求證:平面;(2)求三棱錐的體積.20.(12分)在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.21.(12分)某商場為改進服務(wù)質(zhì)量,隨機抽取了200名進場購物的顧客進行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認為顧客購物體驗的滿意度與性別有關(guān)?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據(jù)統(tǒng)計,在此期間顧客購買該商品的支付情況如下:支付方式現(xiàn)金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應(yīng)事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數(shù)學期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)為了實現(xiàn)中華民族偉大復興之夢,把我國建設(shè)成為富強民主文明和諧美麗的社會主義現(xiàn)代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動.該農(nóng)場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負責人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗,認為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.2、C【解析】
作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結(jié)合三視圖作出三棱錐的實物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.3、A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關(guān)鍵點是通過幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.4、C【解析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項.【詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.5、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎(chǔ)題.6、C【解析】
先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題7、C【解析】
設(shè)出兩人到達小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設(shè)小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學運算能力.8、A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計算能力,屬于基礎(chǔ)題.9、B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題.10、B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎(chǔ)題.11、A【解析】
先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對稱性可求實數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)解析式為,故.令,,解得,.因為為偶函數(shù),故直線為其圖象的對稱軸,令,,故,,因為,故,當時,.故選:A.【點睛】本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應(yīng)的解析式為,另外,如果為正弦型函數(shù)圖象的對稱軸,則有,本題屬于中檔題.12、C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項中函數(shù)在區(qū)間上的單調(diào)性,進而可得出結(jié)果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.【點睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】
做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數(shù)過點時取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎(chǔ)題.14、【解析】試題分析:因,故,所以,,應(yīng)填.考點:三角變換及運用.15、【解析】
根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,,成等差數(shù)列所以所以又化簡可得當且僅當時,取等號又,所以令,則當,即時,當,即時,則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,【點睛】本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導數(shù)的綜合應(yīng)用,難點在于根據(jù)余弦定理以及不等式求出,考驗分析能力以及邏輯思維能力,屬難題.16、【解析】
根據(jù)題意,畫出可行域,將目標函數(shù)看成可行域內(nèi)的點與原點距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當,時,的最大值為.故答案為:9.【點睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉(zhuǎn)化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當x∈(-∞,a]時,|x-2a|-|x-a|≤-a,[f(x)]max因為|y+2020|+|y-a|≥|a+2020|,所以當(y+2020)(y-a)≤0時,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結(jié)合a<0,所以a的取值范圍是[-1010,0).【點睛】本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應(yīng)用問題,以及絕對值三角不等式的應(yīng)用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應(yīng)用問題,關(guān)鍵是等價轉(zhuǎn)化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關(guān)系,求出參數(shù)范圍.18、(1)見解析;(2)【解析】
(1)先證明四邊形是菱形,進而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點為O,再取FG的中點P.以O(shè)為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進而可求出二面角的正弦值.【詳解】(1)證明:因為點為的中點,,所以,因為,所以,所以四邊形是平行四邊形,因為,所以平行四邊形是菱形,所以,因為平面平面,且平面平面,所以平面.因為平面,所以平面平面.(2)記AC,BE的交點為O,再取FG的中點P.由題意可知AC,BE,OP兩兩垂直,故以O(shè)為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系.因為底面ABCD是等腰梯形,,所以四邊形ABCE是菱形,且,所以,則,設(shè)平面ABF的法向量為,則,不妨取,則,設(shè)平面DBF的法向量為,則,不妨取,則,故.記二面角的大小為,故.【點睛】本題考查了面面垂直的證明,考查了二面角的求法,利用空間向量求平面的法向量是解決空間角問題的常見方法,屬于中檔題.19、(1)見解析(2)【解析】
(1)第(1)問,連交于,連接.證明//,即證平面.(2)第(2)問,主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知又為的中點,為的重心,∴在中,,故//.又平面,平面,∴平面.方法二:過作交PD于N,過F作FM||AD交CD于M,連接MN,G為△PAD的重心,又ABCD為梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF為平行四邊形.因為GF||MN,(2)方法一:由平面平面,與均為正三角形,為的中點∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又為正三角形,得,∴,得∴三棱錐的體積為.方法二:由平面平面,與均為正三角形,為的中點∴,,得平面,且由,∴而又為正三角形,得,得.∴,∴三棱錐的體積為.20、(1)證明見解析(2)45°【解析】
(1)設(shè)的中點為,連接,設(shè)的中點為,連接,,從而即為二面角的平面角,,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點,∴.設(shè)的中點為,連接.設(shè)的中點為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點.易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點.∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職(康復健康教育)教育指導階段測試試題及答案
- 2025年高職??疲ㄎ璧妇帉В┪璧缸髌肪幣啪C合測試題及答案
- 2025年中職廣告學(廣告媒體)試題及答案
- 2025年大學大四(文物與博物館學)文化遺產(chǎn)保護學試題及答案
- 2025年中職(聽力語言康復技術(shù))聽力康復訓練試題及答案
- 2025年大學產(chǎn)品手繪表達(手繪技巧)試題及答案
- 2025年高職微電子技術(shù)(集成電路設(shè)計)試題及答案
- 2025年高職藥品生產(chǎn)技術(shù)(藥品生產(chǎn)應(yīng)用)試題及答案
- 2025年高職安全健康與環(huán)保(安全健康環(huán)保應(yīng)用)試題及答案
- 2026年及未來5年市場數(shù)據(jù)中國汽車易損件行業(yè)發(fā)展前景及投資戰(zhàn)略規(guī)劃研究報告
- 施工員個人工作總結(jié)課件
- 四川省瀘州市2026屆數(shù)學高二上期末統(tǒng)考試題含解析
- 2026湖北武漢市文旅集團市場化選聘部分中層管理人員4人筆試參考題庫及答案解析
- 中國金融電子化集團有限公司2026年度校園招聘備考題庫及一套完整答案詳解
- 生物實驗探究教學中學生實驗探究能力培養(yǎng)與評價體系研究教學研究課題報告
- 2025年塔吊指揮員考試題及答案
- 2025福建閩投永安抽水蓄能有限公司招聘21人備考題庫附答案
- 11116《機電控制工程基礎(chǔ)》國家開放大學期末考試題庫
- 2025年機關(guān)工會工作總結(jié)及2025年工作計劃
- 2026年扎蘭屯職業(yè)學院單招職業(yè)適應(yīng)性測試題庫及參考答案詳解
- 2025年昆明市呈貢區(qū)城市投資集團有限公司及下屬子公司第二批招聘(11人)備考考試題庫及答案解析
評論
0/150
提交評論