甘肅天水一中2026屆數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第1頁(yè)
甘肅天水一中2026屆數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第2頁(yè)
甘肅天水一中2026屆數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第3頁(yè)
甘肅天水一中2026屆數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第4頁(yè)
甘肅天水一中2026屆數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

甘肅天水一中2026屆數(shù)學(xué)高二上期末監(jiān)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,且,則()A. B.C. D.2.已知,則點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是()A. B.C. D.3.已知,,且,則()A. B.C. D.4.已知函數(shù)的圖象如圖所示,則不等式的解集為()A. B.C. D.5.已知曲線,下列命題錯(cuò)誤的是()A.若,則是橢圓,其焦點(diǎn)在軸上B.若,則是圓,其半徑為C.若,則是雙曲線,其漸近線方程為D.若,,為上任意一點(diǎn),,為曲線的兩個(gè)焦點(diǎn),則6.已知,分別為雙曲線:的左,右焦點(diǎn),以為直徑的圓與雙曲線的右支在第一象限交于點(diǎn),直線與雙曲線的右支交于點(diǎn),點(diǎn)恰好為線段的三等分點(diǎn)(靠近點(diǎn)),則雙曲線的離心率等于()A. B.C. D.7.《周髀算經(jīng)》中有這樣一個(gè)問(wèn)題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣,自冬至日起,其日影長(zhǎng)依次成等差數(shù)列,立春當(dāng)日日影長(zhǎng)為9.5尺,立夏當(dāng)日日影長(zhǎng)為2.5尺,則冬至當(dāng)日日影長(zhǎng)為()A.12.5尺 B.13尺C.13.5尺 D.14尺8.曲線與曲線的()A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等C.離心率相等 D.焦距相等9.如圖在平行六面體中,與的交點(diǎn)記為.設(shè),,,則下列向量中與相等的向量是()A. B.C. D.10.阿波羅尼斯約公元前年證明過(guò)這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)且的點(diǎn)的軌跡是圓.后人將這個(gè)圓稱為阿氏圓.若平面內(nèi)兩定點(diǎn)A,B間的距離為2,動(dòng)點(diǎn)P與A,B距離之比滿足:,當(dāng)P、A、B三點(diǎn)不共線時(shí),面積的最大值是()A. B.2C. D.11.下列直線中,傾斜角最大的為()A. B.C. D.12.方程表示的曲線是()A.一個(gè)橢圓和一條直線 B.一個(gè)橢圓和一條射線C.一條射線 D.一個(gè)橢圓二、填空題:本題共4小題,每小題5分,共20分。13.若圓C的方程為,點(diǎn)P是圓C上的動(dòng)點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則的最大值為______14.已知點(diǎn)是橢圓上的一點(diǎn),分別為橢圓的左、右焦點(diǎn),已知=120°,且,則橢圓的離心率為___________.15.已知拋物線的準(zhǔn)線方程為,在拋物線C上存在A、B兩點(diǎn)關(guān)于直線對(duì)稱,設(shè)弦AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn),則的值為___________.16.?dāng)?shù)列滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓C:,圓C與x軸交于A,B兩點(diǎn)(1)求直線y=x被圓C所截得的弦長(zhǎng);(2)圓M過(guò)點(diǎn)A,B,且圓心在直線y=x+1上,求圓M的方程18.(12分)如圖,在棱長(zhǎng)為的正方體中,為中點(diǎn)(1)求二面角的大??;(2)探究線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由19.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點(diǎn),與曲線交于,兩點(diǎn),求20.(12分)已知圓C經(jīng)過(guò)點(diǎn),,且圓心C在直線上(1)求圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)向圓C引兩條切線PD,PE,切點(diǎn)分別為D,E,求切線PD,PE的方程,并求弦DE的長(zhǎng)21.(12分)已知空間三點(diǎn).(1)求以為鄰邊平行四邊形的周長(zhǎng)和面積;(2)若,且分別與垂直,求向量的坐標(biāo).22.(10分)給定函數(shù).(1)判斷函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;(2)畫出函數(shù)f(x)的大致圖象,無(wú)須說(shuō)明理由(要求:坐標(biāo)系中要標(biāo)出關(guān)鍵點(diǎn));(3)求出方程的解的個(gè)數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用空間向量共線的坐標(biāo)表示即可求解.【詳解】由題意可得,解得,所以.故選:A2、C【解析】根據(jù)對(duì)稱性求得坐標(biāo)即可.【詳解】點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是,故選:C3、D【解析】利用空間向量共線的坐標(biāo)表示可求得、的值,即可得解.【詳解】因?yàn)?,則,所以,,,因此,.故選:D4、D【解析】原不等式等價(jià)于,根據(jù)的圖象判斷函數(shù)的單調(diào)性,可得和的解集,再分情況或解不等式即可求解.【詳解】由函數(shù)的圖象可知:在和上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時(shí),;當(dāng)時(shí),;由可得,所以或,即或,解得:或,所以原不等式的解集為:,故選:D.5、D【解析】根據(jù)橢圓和雙曲線的性質(zhì)以及定義逐一判斷即可.【詳解】曲線,若,則是橢圓,其焦點(diǎn)在軸上,故A正確;若,則,即是圓,半徑為,故B正確;若,則是雙曲線,當(dāng),則漸近線方程為,當(dāng),則漸近線方程為,故C正確;若,,則是雙曲線,其焦點(diǎn)在軸上,由雙曲線的定義可知,,故D錯(cuò)誤;故選:D6、C【解析】設(shè),,根據(jù)雙曲線的定義可得,,在中由勾股定理列方程可得,在中由勾股定理可得關(guān)于,的方程,再由離心率公式即可求解.【詳解】設(shè),則,由雙曲線的定義可得:,,因?yàn)辄c(diǎn)在以為直徑的圓上,所以,所以,即,解得:,在中,,,,由可得,即,所以雙曲線離心率為,故選:C.第II卷(非選擇題7、B【解析】設(shè)十二節(jié)氣自冬至日起的日影長(zhǎng)構(gòu)成的等差數(shù)列為,利用等差數(shù)列的性質(zhì)即可求解.【詳解】設(shè)十二節(jié)氣自冬至日起的日影長(zhǎng)構(gòu)成的等差數(shù)列為,則立春當(dāng)日日影長(zhǎng)為,立夏當(dāng)日日影長(zhǎng)為,故所以冬至當(dāng)日日影長(zhǎng)為.故選:B8、D【解析】分別求出兩曲線表示的橢圓的位置,長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率和焦距,比較可得答案.【詳解】曲線表示焦點(diǎn)在x軸上的橢圓,長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為6,離心率為,焦距為8,曲線焦點(diǎn)在x軸上的橢圓,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,離心率為,焦距為,故選:D9、B【解析】利用空間向量的加法和減法法則可得出關(guān)于、、的表達(dá)式.【詳解】故選:B.10、C【解析】根據(jù)給定條件建立平面直角坐標(biāo)系,求出點(diǎn)P的軌跡方程,探求點(diǎn)P與直線AB的最大距離即可計(jì)算作答.【詳解】依題意,以線段AB的中點(diǎn)為原點(diǎn),直線AB為x軸建立平面直角坐標(biāo)系,如圖,則,,設(shè),因,則,化簡(jiǎn)整理得:,因此,點(diǎn)P的軌跡是以點(diǎn)為圓心,為半徑的圓,點(diǎn)P不在x軸上時(shí),與點(diǎn)A,B可構(gòu)成三角形,當(dāng)點(diǎn)P到直線(軸)的距離最大時(shí),的面積最大,顯然,點(diǎn)P到軸的最大距離為,此時(shí),,所以面積的最大值是故選:C11、D【解析】首先分別求直線的斜率,再結(jié)合直線傾斜角與斜率的關(guān)系,即可判斷選項(xiàng).【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因?yàn)?,結(jié)合直線的斜率與傾斜角的關(guān)系,可知直線的傾斜角最大.故選:D12、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個(gè)橢圓或一條直線.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)點(diǎn)與圓的位置關(guān)系求得正確答案.【詳解】圓的方程可化為,所以圓心為,半徑.由于,所以原點(diǎn)在圓外,所以最大值為.故答案為:14、【解析】設(shè),由余弦定理知,所以,故填.15、5【解析】先運(yùn)用點(diǎn)差法得到,然后通過(guò)兩點(diǎn)距離公式求出結(jié)果詳解】解:拋物線的準(zhǔn)線方程為,所以,解得,所以拋物線的方程為,設(shè)點(diǎn),,,,的中點(diǎn)為,,則,,兩式相減得,即,又因?yàn)?,兩點(diǎn)關(guān)于直線對(duì)稱,所以,解得,可得,則,故答案為:516、【解析】根據(jù)題中所給的遞推式得到數(shù)列具有周期性,進(jìn)而得到結(jié)果.【詳解】根據(jù)題中遞推式知,可知數(shù)列具有周期性,周期為3,因?yàn)楣使蚀鸢笧椋喝?、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點(diǎn)到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達(dá)定理,求出圓心的橫坐標(biāo),即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問(wèn)1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長(zhǎng)為=【小問(wèn)2詳解】設(shè)A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點(diǎn),∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標(biāo)為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為18、(1)(2)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)【解析】(1)建立空間直角坐標(biāo)系,分別寫出點(diǎn)的坐標(biāo),求出兩個(gè)平面的法向量代入公式求解即可;(2)假設(shè)存在,設(shè),利用相等向量求出坐標(biāo),利用線面平行的向量法代入公式計(jì)算即可.【小問(wèn)1詳解】如下圖所示,以為原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,,,,,.所以,設(shè)平面的法向量,所以,即,令,則,,所以,連接,因?yàn)椋?,,平面,平面,平面,所以平面,所以為平面的一個(gè)法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問(wèn)2詳解】假設(shè)在線段上存在點(diǎn),使得平面,設(shè),,,因?yàn)槠矫?,所以,即所以,即解得所以在線段上存在點(diǎn),使得平面,此時(shí)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)19、(1),(2)4【解析】(1)根據(jù),即可將直線的極坐標(biāo)方程轉(zhuǎn)化為普通方程;消參數(shù),即可求出曲線的普通方程;(2)由題意易知,求出直線的參數(shù)方程,將其代入曲線的普通方程,利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,即可求出結(jié)果【小問(wèn)1詳解】解:直線極坐標(biāo)方程為,即,又,可得的普通方程為,曲線的參數(shù)方程是(為參數(shù),消參數(shù),所以曲線的普通方程為【小問(wèn)2詳解】解:在中令得,,傾斜角,的參數(shù)方程可設(shè)為,即(為參數(shù)),將其代入,得,,設(shè),對(duì)應(yīng)的參數(shù)分別為,,則,,,異號(hào),.20、(1)(2)或,【解析】(1)設(shè)圓心,根據(jù)圓心在直線上及圓過(guò)兩點(diǎn)建立方程求解即可;(2)分切線的斜率存在與不存在分類討論,利用圓心到切線的距離等于半徑求解,再根據(jù)圓的切線的幾何性質(zhì)求弦長(zhǎng)即可.【小問(wèn)1詳解】設(shè)圓心,因?yàn)閳A心C在直線上,所以①因?yàn)锳,B是圓上的兩點(diǎn),所以,所以,即②聯(lián)立①②,解得,所以圓C的半徑,所以圓C的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】若過(guò)點(diǎn)P的切線斜率不存在,則切線方程為若過(guò)點(diǎn)P的切線斜率存在,設(shè)為k,則切線方程為,即由,解得,所以切線方程為綜上,過(guò)點(diǎn)P的圓C的切線方程為或設(shè)PC與DE交于點(diǎn)F,因?yàn)?,,PC垂直平分DE,所以,所以所以21、(1)周長(zhǎng)為,面積為7.(2)或.【解析】(1)根據(jù)點(diǎn),求出向量,利用向量的摸公式即可求出的距離,可以求出周長(zhǎng),再利用向量的夾角公式求出夾角的余弦值,根據(jù)平方關(guān)系得到正弦值,再利用即可求解;(2)首先設(shè)出,根據(jù)題意可得出的方程組,解出滿足條件所有的值即可求解.【小問(wèn)1詳解】由題中條件可知,,,,.所以以為鄰邊的平行四邊形的周長(zhǎng)為.因?yàn)?,因?yàn)椋?所以.故以以為鄰邊的平行四邊形的面積為:.【小問(wèn)2詳解】設(shè),則,,因?yàn)?,且分別與垂直,得,解得或所以向量的坐標(biāo)為或.22、(1)函數(shù)的減區(qū)間為,增區(qū)間為,有極小值,無(wú)極大值;(2)具體見解析;(3)具體見解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論