2026屆云南省玉溪市第二中學高三上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
2026屆云南省玉溪市第二中學高三上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
2026屆云南省玉溪市第二中學高三上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
2026屆云南省玉溪市第二中學高三上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
2026屆云南省玉溪市第二中學高三上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆云南省玉溪市第二中學高三上數(shù)學期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知滿足,,,則在上的投影為()A. B. C. D.22.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.3.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20174.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.325.已知集合,,若,則()A.或 B.或 C.或 D.或6.已知向量,,當時,()A. B. C. D.7.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離8.設(shè)正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.29.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.10.設(shè)為的兩個零點,且的最小值為1,則()A. B. C. D.11.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點所在的區(qū)間是()A. B. C. D.12.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,則_________.14.設(shè)變量,,滿足約束條件,則目標函數(shù)的最小值是______.15.根據(jù)如圖所示的偽代碼,輸出的值為______.16.若函數(shù),則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為2,且過點.(1)求橢圓的方程;(2)設(shè)為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,(?。┳C明:平分線段(其中為坐標原點);(ⅱ)當取最小值時,求點的坐標.18.(12分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.19.(12分)在平面直角坐標系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.20.(12分)己知,,.(1)求證:;(2)若,求證:.21.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.22.(10分)已知函數(shù),為實數(shù),且.(Ⅰ)當時,求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎(chǔ)題.2、C【解析】

首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關(guān)于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關(guān)于原點對稱,∴的圖象關(guān)于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.3、D【解析】

依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.4、B【解析】

根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進行抽樣,屬于基礎(chǔ)題.5、B【解析】

因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.6、A【解析】

根據(jù)向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.【點睛】本題考查向量的坐標運算、誘導公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.7、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r8、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)的應用,屬于基礎(chǔ)題.9、A【解析】

作出不等式組表示的可行域,然后對四個選項一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.10、A【解析】

先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設(shè)x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點睛】本題考查了三角恒等變換和三角函數(shù)的圖象與性質(zhì)的應用問題,是基礎(chǔ)題.11、B【解析】

根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數(shù)值正負,即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,,,∵,所以在上單調(diào)遞增.又因為,所以函數(shù)的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數(shù)的圖象及函數(shù)的零點,屬于基礎(chǔ)題.12、D【解析】

集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結(jié)果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應用,考查了數(shù)量積的幾何意義及向量的模的運算,屬于基礎(chǔ)題.14、7【解析】作出不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,其中A(2,1),B(1,2),C(4,5)設(shè)z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經(jīng)過點A時,目標函數(shù)z達到最小值∴z最小值=F(2,1)=715、7【解析】

表示初值S=1,i=1,分三次循環(huán)計算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結(jié)束,輸出:i=7.故答案為:7【點睛】本題考查在程序語句的背景下已知輸入的循環(huán)結(jié)構(gòu)求輸出值問題,屬于基礎(chǔ)題.16、【解析】

根據(jù)題意,由函數(shù)的解析式求出的值,進而計算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì)、對數(shù)運算法則的應用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(ⅰ)見解析(ⅱ)點的坐標為.【解析】

(1)由題意得,再由的關(guān)系求出,即可得橢圓的標準方程;(2)(i)設(shè),的中點為,,設(shè)直線的方程為,代入橢圓方程中,運用根與系數(shù)的關(guān)系和中點坐標公式,結(jié)合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調(diào)性,可得取最小值時的條件獲得等量關(guān)系,從而確定點的坐標.【詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設(shè),的中點為,(?。┳C明:由,可設(shè)直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當取最小值時,點的坐標為【點睛】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運用,運用根與系數(shù)的關(guān)系和中點坐標公式,同時考查弦長公式,屬于較難題.18、(1)證明見解析,;(2)【解析】

(1)由成等差數(shù)列,可得到,再結(jié)合公式,消去,得到,再給等式兩邊同時加1,整理可證明結(jié)果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項和.【詳解】(1)由成等差數(shù)列,則,即,①當時,,又,②由①②可得:,即,時,.所以是以3為首項,3為公比的等比數(shù)列,,所以.(2),所以.【點睛】此題考查了數(shù)列遞推式,等比數(shù)列的證明,裂列相消求和,考查了學生分析問題和解決問題的能力,屬于中檔題.19、(1).(2)的方程為.【解析】

(1)令,則,由此能求出點C的軌跡方程.(2)令,令直線,聯(lián)立,得,由此利用根的判別式,韋達定理,三角形面積公式,結(jié)合已知條件能求出直線的方程?!驹斀狻拷猓海?)因為,即直線的斜率分別為且,設(shè)點,則,整理得.(2)令,易知直線不與軸重合,令直線,與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線的方程為?!军c睛】本題考查橢圓方程、直線方程的求法,考查橢圓方程、橢圓與直線的位置關(guān)系,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題。20、(1)證明見解析(2)證明見解析【解析】

(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題..21、(1);(2)或.【解析】

(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設(shè)直線方程,與橢圓方程聯(lián)立,運用根與系數(shù)關(guān)系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設(shè)方程為,聯(lián)立,消去得,,,設(shè),,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關(guān)系,要熟練應用根與系數(shù)關(guān)系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.22、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】

(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【詳解】當時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論