2026屆天津市新四區(qū)示范校高二上數(shù)學期末達標檢測模擬試題含解析_第1頁
2026屆天津市新四區(qū)示范校高二上數(shù)學期末達標檢測模擬試題含解析_第2頁
2026屆天津市新四區(qū)示范校高二上數(shù)學期末達標檢測模擬試題含解析_第3頁
2026屆天津市新四區(qū)示范校高二上數(shù)學期末達標檢測模擬試題含解析_第4頁
2026屆天津市新四區(qū)示范校高二上數(shù)學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆天津市新四區(qū)示范校高二上數(shù)學期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,角終邊上有一點(1,2),為銳角,且,則()A.-18 B.-6C. D.2.已知定義在R上的函數(shù)滿足,且有,則的解集為()A B.C. D.3.下列直線中,傾斜角最大的為()A. B.C. D.4.命題“,”的否定是A, B.,C., D.,5.若任取,則x與y差的絕對值不小于1的概率為()A. B.C. D.6.三棱柱中,,,,若,則()A. B.C. D.7.用數(shù)學歸納法證明“”時,由假設證明時,不等式左邊需增加的項數(shù)為()A. B.C. D.8.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學生的幾個重要的研學旅行地.某中學在校學生人,學校團委為了了解本校學生到上述紅色基地研學旅行的情況,隨機調查了名學生,其中到過中共一大會址或井岡山研學旅行的共有人,到過井岡山研學旅行的人,到過中共一大會址并且到過井岡山研學旅行的恰有人,根據這項調查,估計該學校到過中共一大會址研學旅行的學生大約有()人A. B.C. D.9.是直線與直線互相平行的()條件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要10.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項和()A.165 B.138C.60 D.3011.設變量x,y滿足約束條件則目標函數(shù)的最小值為()A.3 B.1C.0 D.﹣112.設,直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù)______14.已知實數(shù)x,y滿足約束條件,則的最小值為______.15.已知向量,,若,則實數(shù)=________.16.如圖,正方體的棱長為1,P為BC的中點,Q為線段上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________(寫出所有正確命題的編號).①當時,S為四邊形;②當時,S為等腰梯形;③當時,S與的交點R滿足;④當時,S為六邊形;⑤當時,S的面積為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設,求數(shù)列的前項和.18.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標,若不存在,請說明理由.19.(12分)2021年國慶期間,某電器商場為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每消費滿8千元,可減8百元.方案二:消費金額超過8千元(含8千元),可抽取小球三次,其規(guī)則是依次從裝有2個紅色小球、2個黃色小球的一號箱子,裝有2個紅色小球、2個黃色小球的二號箱子,裝有1個紅色小球、3個黃色小球的三號箱子各抽一個小球(這些小球除顏色外完全相同),其優(yōu)惠情況為:若抽出3個紅色小球則打6折;若抽出2個紅色小球則打7折;若抽出1個紅色小球則打8折;若沒有抽出紅色小球則不打折.(1)若有兩名顧客恰好消費8千元,他們都選中第二方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;(2)若你朋友在該商場消費了1萬元,請用所學知識幫助你朋友分析一下應選擇哪種付款方案.20.(12分)已知集合,.(1)當a=3時,求.(2)若“”是“x∈A”的充分不必要條件,求實數(shù)a的取值范圍.21.(12分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點在線段含端點上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.22.(10分)已知的內角A,B,C的對邊分別為a,b,c.(1)若,,,求邊長c;(2),,,求角C.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由終邊上的點可得,由同角三角函數(shù)的平方、商數(shù)關系有,再應用差角、倍角正切公式即可求.【詳解】由題設,,,則,又,,所以.故選:A2、A【解析】構造,應用導數(shù)及已知條件判斷的單調性,而題設不等式等價于即可得解.【詳解】設,則,∴在R上單調遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A3、D【解析】首先分別求直線的斜率,再結合直線傾斜角與斜率的關系,即可判斷選項.【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因為,結合直線的斜率與傾斜角的關系,可知直線的傾斜角最大.故選:D4、C【解析】特稱命題的否定是全稱命題,并將結論加以否定,所以命題的否定為:,考點:全稱命題與特稱命題5、C【解析】根據題意,在平面直角坐標系中分析以及與差的絕對值不小于1所對應的平面區(qū)域,求出其面積,由幾何概型公式計算可得答案.【詳解】根據題意,,其對應的區(qū)域為正方形,其面積,若與差的絕對值不小于1,即,即或,對應的區(qū)域為圖中的陰影部分,其面積為,故與差的絕對值不小于1的概率.故選:C6、A【解析】利用空間向量線性運算及基本定理結合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.7、C【解析】當成立,寫出左側的表達式,當時,寫出對應的關系式,觀察計算即可【詳解】從到成立時,左邊增加的項為,因此增加的項數(shù)是,故選:C8、B【解析】作出韋恩圖,設調查的學生中去過中共一大會址研學旅行的學生人數(shù)為,根據題意求出的值,由此可得出該學校到過中共一大會址研學旅行的學生人數(shù).【詳解】如下圖所示,設調查的學生中去過中共一大會址研學旅行的學生人數(shù)為,由題意可得,解的,因此,該學校到過中共一大會址研學旅行的學生的人數(shù)為.故選:B.【點睛】本題考查韋恩圖的應用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎題.9、B【解析】求出直線與平行的等價條件,再利用充分條件、必要條件的定義判斷作答.【詳解】由解得或,當時,與平行,當時,與平行,則直線與直線平行等價于或,所以是直線與直線互相平行的充分而不必要條件.故選:B10、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質求得首項,然后由等差數(shù)列的前項和公式計算【詳解】因為,,成等比數(shù)列,所以,所以,解得,所以故選:A11、C【解析】線性規(guī)劃問題,作出可行域后,根據幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結合知過時取最小值故選:C12、A【解析】由可求得實數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據共軛復數(shù)的概念,即可得答案.【詳解】由題意可知:復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù),故答案為:14、【解析】作出該不等式表示的平面區(qū)域,由的幾何意義結合距離公式得出答案.【詳解】該不等式組表示的平面區(qū)域,如下圖所示過點作直線的垂線,垂足為因為表示原點與可行域中點之間的距離,所以的最小值為.故答案為:15、【解析】由可求得【詳解】因為,所以,故答案為:【點睛】本題考查向量垂直的坐標表示,屬于基礎題16、①②③⑤【解析】①由如圖當點向移動時,滿足,只需在上取點滿足,即可得截面為四邊形,如圖所示,是四邊形,故①正確;②當時,即為中點,此時可得PQ∥AD,AP=QD==,故可得截面APQD為等腰梯形,等腰梯形,故②正確;③當時,如圖,延長至,使,連接交于,連接交于,連接,可證,由∽,可得,故可得,故③正確;④由③可知當時,只需點上移即可,此時的截面形狀仍然如圖所示的,如圖是五邊形,故④不正確;⑤當時,與重合,取的中點,連接,可證,且,可知截面為為菱形,故其面積為,如圖是菱形,面積為,故⑤正確,故答案為①②③⑤考點:正方體的性質.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)化簡得到,由此證得數(shù)列為等差數(shù)列.(2)先求得,然后利用錯位相減求和法求得.【小問1詳解】.又數(shù)列是以1為首項,4為公差等差數(shù)列.【小問2詳解】由(1)知:,則數(shù)列的通項公式為,則,①,②,①-②得:,,,,.18、(1);(2)存在,T(0,1)﹒【解析】(1)根據橢圓的定義,結合即可求P的軌跡方程;(2)假設存在T(0,t),設AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設直線AB的方程為,聯(lián)立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.19、(1)(2)選擇方案二更劃算【解析】(1)要使方案二比方案一優(yōu)惠,則需要抽出至少一個紅球,求出沒有抽出紅色小球的概率,再根據對立事件的概率公式即可得出答案;(2)若選擇方案一,則需付款(元),若選擇方案二,設付款金額為元,則可取6000,7000,8000,10000,求出對應概率,從而可求得的期望,在比較的期望與9200的大小即可得出結論.【小問1詳解】解:根據題意得要使方案二比方案一優(yōu)惠,則需要抽出至少一個紅球,設沒有抽出紅色小球為事件,則,所以所求概率;【小問2詳解】解:若選擇方案一,則需付款(元),若選擇方案二,設付款金額為元,則可取6000,7000,8000,10000,,,,,故的分布列為X60007000800010000P所以(元),因為,所以選擇方案二更劃算.20、(1)(2)【解析】(1)解不等式求出集合、,然后根據交集的運算法則求交集;(2)解不等式求出集合、,求出,然后根據充分不必要性列出不等式組求解.【小問1詳解】解:由題意得:當時,可解得集合的解集為由可解得或故.【小問2詳解】的解集為又又“”是“x∈A”的充分不必要條件解得:,故實數(shù)a的取值范圍21、(1)證明見解析(2)點與點重合時,二面角的余弦值為【解析】(1)先利用平面幾何知識和余弦定理得到及各邊長度,利用線面平行的性質和判定定理得到線面垂直,再利用線線平行得到線面垂直;(2)建立空間直角坐標系,設,寫出相關點的坐標,得到相關向量的坐標,利用平面的法向量夾角求出二面角的余弦值,再通過二次函數(shù)的最值進行求解.【小問1詳解】證明:在梯形中,因為,,又因為,所以,,所以,即,解得,,所以,即.因為平面,平面,所以,而平面平面,所以平面.因為,所以平面.【小問2詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論