版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省肇慶聯(lián)盟校2026屆數(shù)學高二上期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓,則它的短軸長為()A.2 B.4C.6 D.82.已知雙曲線的右焦點為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點,若(為坐標原點),則雙曲線的離心率為().A. B.C. D.3.在矩形中,,在該矩形內(nèi)任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.4.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.5.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為6.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,7.已知,分別是圓和圓上的動點,點在直線上,則的最小值是()A. B.C. D.8.在平面上有及內(nèi)一點O滿足關(guān)系式:即稱為經(jīng)典的“奔馳定理”,若的三邊為a,b,c,現(xiàn)有則O為的()A.外心 B.內(nèi)心C.重心 D.垂心9.若,則下列不等式不能成立是()A. B.C. D.10.已知A(3,2),點F為拋物線的焦點,點P在拋物線上移動,為使取得最小值,則點P的坐標為()A.(0,0) B.(2,2)C. D.11.下列數(shù)列中成等差數(shù)列的是()A. B.C. D.12.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.14.在不等邊△ABC(三邊均不相等)中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,且有,則角C的大小為________15.已知拋物線的焦點為,過焦點的直線交拋物線與兩點,且,則拋物線的準線方程為________.16.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為數(shù)列的前項和,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和(3)設(shè),若不等式對一切恒成立,求實數(shù)取值范圍18.(12分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點分別在棱、上·(1)若P是的中點,證明:;(2)若平面,二面角的余弦值為,求四面體的體積19.(12分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前n項和.20.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,______,求m的值從下列三個條件中任選一個補充在上面問題中并作答:條件①:;條件②:圓上一點P到直線的最大距離為;條件③:21.(12分)已知拋物線上任意一點到焦點F最短距離為2,(1)求拋物線C的方程;(2)過焦點F的直線,互相垂直,且與C分別交于A,B,M,N四點,求四邊形AMBN面積的最小值22.(10分)如圖在四棱錐中,底面是菱形,,平面平面,,,為的中點,是棱上的一點,且.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)橢圓短軸長的定義進行求解即可.【詳解】由橢圓的標準方程可知:,所以該橢圓的短軸長為,故選:B2、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由,可知為的三等分點,用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由到漸近線的距離為,所以,又,所以,因為,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.3、D【解析】利用幾何概型的概率公式,轉(zhuǎn)化為面積比直接求解.【詳解】以AB為直徑作圓,當點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D4、C【解析】按照程序框圖的流程進行計算.【詳解】,故輸出S的值為.故選:C5、D【解析】在正方體中,利用線面關(guān)系逐一判斷即可.【詳解】解:對于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯誤故選D【點睛】本題考查了線面的空間位置關(guān)系及空間角,做出圖形分析是關(guān)鍵,考查推理能力與空間想象能力6、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設(shè)平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設(shè)到的距離為,則,當?shù)拿娣e最小時,,故正確故選:7、B【解析】由已知可得,,求得關(guān)于直線的對稱點為,則,計算即可得出結(jié)果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設(shè)關(guān)于直線的對稱點為,則解得,則因為,分別在圓和圓上,所以,,則因為,所以故選:B.8、B【解析】利用三角形面積公式,推出點O到三邊距離相等?!驹斀狻坑淈cO到AB、BC、CA的距離分別為,,,,因為,則,即,又因為,所以,所以點P是△ABC的內(nèi)心.故選:B9、C【解析】利用不等式的性質(zhì)可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因為,所以,所以,,,故ABD正確;對于C,若,則,故C錯誤.故選:C.10、B【解析】設(shè)點P到準線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點到直線的距離最短求出【詳解】如圖所示:設(shè)點P到準線的距離為,準線方程為,所以,當且僅當點為與拋物線的交點時,取得最小值,此時點P的坐標為故選:B11、C【解析】利用等差數(shù)列定義,逐一驗證各個選項即可判斷作答.【詳解】對于A,,A不是等差數(shù)列;對于B,,B不是等差數(shù)列;對于C,,C是等差數(shù)列;對于D,,D不是等差數(shù)列.故選:C12、C【解析】設(shè),代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設(shè),則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設(shè)弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)易知,應(yīng)用斜率的兩點式及橢圓參數(shù)關(guān)系可得,進而求橢圓離心率.【詳解】由題設(shè),,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.14、【解析】由正弦定理可得,又,,,,,在三角形中,.考點:1正弦定理;2正弦的二倍角公式.15、【解析】根據(jù)題意作出圖形,設(shè)直線與軸的夾角為,不妨設(shè),設(shè)拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為,進一步可以得到,進而求出,同理求出,最后解得答案.【詳解】設(shè)直線與軸的夾角為,根據(jù)拋物線的對稱性,不妨設(shè),如圖所示.設(shè)拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準線方程為:.故答案為:.16、##0.5【解析】根據(jù)條件概率求概率的方法即可求得答案.【詳解】設(shè)A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因為甲乙兩地下雨相互獨立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)利用的關(guān)系,根據(jù)等比數(shù)列的定義求通項公式.(2)由(1)可得,應(yīng)用裂項相消法求.(3)應(yīng)用錯位相減法求得,由題設(shè)有,討論為奇數(shù)、偶數(shù)求的取值范圍【小問1詳解】當時,,可得,當時,,可得,∴是首項、公比都為的等比數(shù)列,故.【小問2詳解】由(1),,∴.【小問3詳解】由題設(shè),,∴,則,∴,由對一切恒成立,令,則,∴數(shù)列單調(diào)遞減,∴當為奇數(shù),恒成立且在上遞減,則,當為偶數(shù),恒成立且在上遞增,則,綜上,.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用空間向量的坐標運算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標原點,,,所在直線分別為,,軸建立空間直角坐標系,則,,,,設(shè),其中,,若是的中點,則,,,于是,∴,即【小問2詳解】由題設(shè)知,,,是平面內(nèi)的兩個不共線向量設(shè)是平面的一個法向量,則,取,得又平面的一個法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時設(shè),而,由此得點,,∵平面,且平面的一個法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.19、(1)證明見解析;(2)當為偶數(shù)時,;當為奇數(shù)時,.【解析】(1)根據(jù)等比數(shù)列的定義進行證明即可;(2)利用分組求和法,結(jié)合錯位相減法進行求解即可.【小問1詳解】由題知:所以又因為所以所以數(shù)列為以-1為首項,-1為公比的等比數(shù)列;【小問2詳解】由(1)知:,所以,,記,所以,當為偶數(shù)時,;當為奇數(shù)時,;記兩式相減得:,所以,所以,當偶數(shù)時,;當為奇數(shù)時,.20、(1)(2)【解析】(1)根據(jù)圓心在過點,的線段的中垂線上,同時圓心圓心在直線上,可求出圓心的坐標,進而求得半徑,最后求出其標準方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時相同.【小問1詳解】由題意可知,圓心在點的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因為,,所以圓心C到直線l的距離,則,解得,②,圓上一點P到直線的最大距離為,可知圓心C到直線l的距離則,解得,③,因為,所以,得,又,所以圓心C到直線l的距離,則,解得21、(1)(2)128【解析】(1)設(shè)拋物線上任一點為,由可得答案.(2)由題意可知,的斜率k存在且不為0,設(shè)出其方程并與拋物線方程聯(lián)立,得出韋達定理,從而得出弦長的表達式,同理得出弦長的表達式,進而得出四邊形AMBN面積的不等式,從而求出其最小值.【小問1詳解】設(shè)拋物線上任一點為,則,所以當時,,又∵,∴,即所以拋物線C的方程為【小問2詳解】設(shè)交拋物線C于點,,交拋物線C于點,由題意可知,的斜率k存在且不為0設(shè)的方程為由,得,同理可得,,當且僅當時,即時,等號成立∴四邊形AMBN面積的最小值為12822、(1)見解析;(2).【解析】(1)推導出PQ⊥AD,從而PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,則AQ∥BC,推導出MN∥PA,由此能證明PA∥平面BMQ(2)連結(jié)BD,以Q為坐標原點,以QA、QB、QP分別為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出二面角M﹣BQ﹣P的余弦值【詳解】(1)由已知PA=PD,Q為AD的中點,∴PQ⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ?面PAD,∴PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,∵底面AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 表面(化學)熱處理工班組管理考核試卷含答案
- 軋制備品工創(chuàng)新思維水平考核試卷含答案
- 再生物資回收挑選工安全強化評優(yōu)考核試卷含答案
- 電化學精制裝置操作工崗前理論綜合實踐考核試卷含答案
- 2025年忻州市招聘教師考試真題
- 血透個案護理:液體與電解質(zhì)管理
- 安裝工程材料用量及成本分析
- 師德建設(shè)先進事跡撰寫方法
- 一年級數(shù)學下冊知識點復習題
- 硝化工藝安全培訓
- 斜拉索無應(yīng)力索長的計算
- 智慧機場綜合安防系統(tǒng)解決方案
- 2024年高中英語學業(yè)水平測試及答案
- 天塔之光模擬控制PLC課程設(shè)計
- 初中日語人教版七年級第一冊單詞表講義
- GB/T 9065.5-2010液壓軟管接頭第5部分:37°擴口端軟管接頭
- GB/T 5847-2004尺寸鏈計算方法
- GB/T 20475.2-2006煤中有害元素含量分級第2部分:氯
- 北師大版一年級數(shù)學上冊口算比賽試題試卷
- 畢業(yè)設(shè)計混凝土框架結(jié)構(gòu)計算書
- 4226-2022連續(xù)腎臟替代治療裝置臨床使用安全管理與質(zhì)量控制規(guī)范
評論
0/150
提交評論